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1. Introduction

In Lecture 4 we discussed the IV estimator in a modelling framework in which the causal e¤ect of interest

is assumed constant across individuals (e.g. the return to education is the same for everyone).

Assuming the causal e¤ect to be constant (homogeneous) across individuals is clearly quite a restric-

tive.

In this lecture I will discuss interpretation of the IV estimator in a less restrictive framework, in which

potential outcomes - and hence treatment e¤ects - are allowed to be heterogeneous across individuals.

References for this lecture:

Angrist and Pischke (2009), Chapter 4.4-4.5.

2. IV with Heterogenous Potential Outcomes

Reference: Angrist-Pischke, Chapter 4.4.

2.0.1. LATE: Setting the scene

� Common features of the type of environment for which we may want to (and be able to do so)

estimate the Local Average Treatment E¤ect, LATE:

�The treatment status, from now on denoted Di, depends on an underlying instrument Zi.

�The e¤ect of Zi on treatment is heterogeneous.

�The e¤ect of treatment Di on the outcome variable of interest Yi is also heterogeneous.

� Thus, the causal chain is as follows:

Zi ! Di ! Yi;

and we are primarily interested in the e¤ect of treatment on outcomes; i.e. Di ! Yi.

� De�ne Yi (d; z) as the potential outcome of individual i, were this individual to have treatment

status Di = d and instrument value Zi = z. We focus on the case where both d and z can take two
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values, 0 or 1. That is, Di and Zi are dummy variables.

� Following Angrist-Pischke, we relate the exposition to a speci�c application, namely Angrist (1990),

who looks at the e¤ect of veteran status on earnings in the US.

Illustration: Angrist (1990; AER)

� Context: In the 1960s and 70s young men in the US were at risk of being drafted for military

service in Vietnam. Fairness concerns led to the institution of a draft lottery in 1970 that was used

to determine priority for conscription.

� In each year from 1970 to 1972, random sequence numbers were randomly assigned to each birth

date in cohorts of 19-year-olds.

�Men with lottery numbers below a cuto¤ were eligible for the draft

�Men with lottery numbers above the cuto¤ were not.

� Many eligible men were exempted form service for health or other reasons.

� Others, who were not eligible, nevertheless volunteered for service.

� The smart idea: Use the lottery outcome as an instrument for veteran status, in an analysis of the

causal e¤ect of veteran status on earnings. What about relevance and validity?

�While the lottery didn�t completely determine veteran status, it certainly mattered: relevance.

�The lottery outcome was random and seems reasonable to suppose that its only e¤ect was on

veteran status: validity.

� The instrument is thus de�ned as follows:

Zi = 1 if lottery implied individual i would be draft eligible,

Zi = 0 if lottery implied individual i would not be draft eligible.

2



� The instrument a¤ects treatment, which is this application amounts to entering the military service.

The econometrician observes treatment status as follows:

Di = 1 if individual i served in the Vietnam war (veteran),

Di = 0 if individual i did not serve in the Vietnam war (not veteran);

� Now de�ne potential outcomes for Di as D0i and D1i, respectively, where D0i is the treatment

status when Zi = 0 and D1i is the treatment status when Zi = 1. We thus have:

D0i = 0 if individual i would not serve in the military if not draft eligible

D0i = 1 if individual i would serve in the military even though not draft eligible

D1i = 0 if individual i would not serve in the military even though draft eligible

D1i = 1 if individual i would serve in the military if draft eligible.

� In view of this, the following way of categorizing types of individuals is useful (why will be clear

later):

Compliers: D1i = 1; D0i = 0

Never-takers: D1i = 0; D0i = 0

Always-takers: D1i = 1; D0i = 1

De�ers: D1i = 0; D0i = 1

Note that "de�ers" are very odd cases - as we shall see, the basic LATE estimator assumes there

are no de�ers. In the present context, at least, it�s hard to see why there might be de�ers - right?

� The outcome variable of interest is earnings, and the main research question is whether veteran

status causes earnings. The causal e¤ect of veteran status, conditional on draft eligibility status, is

de�ned as

Yi (1; Zi)� Yi (0; Zi) :
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� As usual, we can�t identify individual treatment e¤ects, because we don�t observe all potential

outcomes.

� Let�s remind ourselves of what the OLS and IV estimators would look like in the present context.

2.0.2. Estimation by regression: OLS and IV

� If I use OLS to estimate a model of the following kind:

Yi = �+ �Di + "i;

where � is a constant and "i a zero�mean residual, we know that �
OLS is interpretable as an estimate

of ATE and ATE1; provided potential outcomes are independent of actual treatment status. That

is, provided treatment is (as good as) randomly assigned. If that doesn�t hold, OLS does not identify

ATE or ATE1. In the present context, it seems likely there are lots of unobservables correlated

with veteran status, so the OLS estimator is hard to justify here.

� Suppose I were to use an IV estimator instead, with Zi as a single instrument:

Di =  + �Zi + ui

Yi = �+ �Di + "i;

For now, don�t worry about my reasons for doing this - just think about what I "would get" if I

were to do this. Recall that in the special case where Zi is a dummy variable, the IV estimator

can be written simply as:

�IV =
E [YijZi = 1]� E [YijZi = 0]
E [DijZi = 1]� E [DijZi = 0]

;

which is theWald estimator. Inevitably, this is what I will get if I use IV to model earnings as a

function of veteran status, while using draft eligibility status as an instrument for veteran status.

� But how should this quantity be interpreted? Does it estimate an average treatment e¤ect?
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� Yes, potentially.

2.0.3. LATE: A distinct evaluation parameter

� One common "evaluation parameter" estimated by means of instrumental variable techniques is the

Local Average Treatment E¤ect (LATE).

� Suppose we are concerned that OLS doesn�t identify ATE because there are unobserved di¤erences

between veterans and nonveterans (the standard endogeneity concern). We propose to use the

draft lottery outcome as an instrument for veteran status. Suppose we are prepared to make four

assumptions as follows:

Assumption A1: Independence between the potential outcomes [Yi (D1i; 1) ; Yi (D0i; 0) ; D1i; D0i]

and the instrument Zi. That is, the instrument is as good as randomly assigned. This is what we mean

by "exogenous" in the present context.

Assumption A2: Exclusion restriction. The potential outcomes Yi (d; z) is only a function of

d; they are only a¤ected by the instrument Zi through the treatment variable Di. Implies Yi (d; 0) =

Yi (d; 1) :

Assumption A3: Relevance, �rst stage. E [D1i �D0i 6= 0]. The average causal e¤ect of the

instrument on veteran status is not zero.

Assumption A4: Monotonicity. D1i � D0i � 0 for all individuals (or vice versa). That is, no

de�ers.

� A1 states that the instrument is as good as randomly assigned. Draft eligibility was determined by

a lottery, lending credibility to this assumption.

� A2 says that the instrument can have no direct e¤ect on the outcome variable (earnings). May or

may not hold in this case. (Why might it not hold?)

� A3 says that the instrument impacts on treatment - easy to check in practice.
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� A4 says that any man who would serve if not draft eligible, would also serve if draft eligible. A

reasonable assumption in this case it would seem.

� Under these assumptions the parameter you�re estimating in the second stage of your IV procedure

(the coe¢ cient on veteran status, Di) is interpretable as measuring the average e¤ect of military

service on earnings for men who served because they were draft eligible, but who would not have

served had they not been draft eligible. That is, the average a¤ect for the group of men whose

treatment status can be changed by the instrument - the "compliers". Note that this group of

people does not include volunteers (always-takers) or men who were exempted from service (never

takers).

� The average e¤ect for the compliers is a parameter called the LATE. Mathematically, we de�ne the

LATE as

LATE = E [Y1i � Y0ijD1i �D0i > 0] ;

where Y1i�Y0i denotes the di¤erence in outcomes due to treatment, D1i is the potential treatment

status when the instrument Zi = 1 and D0i is the potential treatment status when Zi = 0. Clearly

D1i �D0i > 0 only applies for compliers.

� Under assumptions A1-A4 we can show that the Wald estimator coincides with the expression for

LATE. In other words, IV identi�es LATE, in this case.

� This is known as the LATE Theorem.

2.0.4. Analysis: Why Wald = LATE?

� Relate observed treatment status to potential treatment outcomes:

Di = D0i + (D1i �D0i)Zi;

Di = �0 + �1iZi + �i;
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where �0 = E (D0i) and �1i = (D1i �D0i) is the (note) heterogeneous causal e¤ect of the

instrument on Di. Assumption A1 (independence) implies �1i is interpretable as the causal e¤ect

of Zi on treatment (compare this to the case where treatment is randomized). Assumption A4

(monotonicity) implies that �1i � 0 for all i or �1i � 0 for all i:

� Recall that the potential outcome of our main "dependent variable" is de�ned Yi (d; z). Assumption

A2 (exclusion restriction) implies Yi (d; 0) = Yi (d; 1), hence we can write the observed outcome:

Yi = Yi (0; Zi) + [Yi (1; Zi)� Yi (0; Zi)]Di;

Yi = Y0i + [Y1i � Y0i]Di

Yi = �0 + �iDi + �i;

where �0 = E (Y0i) ; �i = Y1i � Y0i is a random coe¢ cient and �i measures the discrepancy

between E (Y0i) and Y0i. Note the heterogeneous causal e¤ect of treatment (e.g. veteran status)

on your outcome variable of interest (e.g. earnings).

� Now consider the formula for the Wald estimator:

E [YijZi = 1]� E [YijZi = 0]
E [DijZi = 1]� E [DijZi = 0]

:

The exclusion restriction (A2) and independence (A1) assumptions imply

E [YijZi = 1] = E [Y0i + [Y1i � Y0i]D1ijZi = 1] ;

E [YijZi = 1] = E [Y0i + [Y1i � Y0i]D1i] :

By the same principles,

E [YijZi = 0] = E [Y0i + [Y1i � Y0i]D0i] ;
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and so the numerator in the Wald estimator can be written

Wald-numerator = E [YijZi = 1]� E [YijZi = 0]

= E [Y0i + [Y1i � Y0i]D1i]� E [Y0i + [Y1i � Y0i]D0i]

= E [(Y1i � Y0i) (D1i �D0i)] :

Now, monotonicity implies (D1i �D0i) is either equal to 1 or 0; hence

Wald-numerator = E [(Y1i � Y0i) (D1i �D0i)]

= P (D1i �D0i > 0)E [(Y1i � Y0i) jD1i �D0i > 0] :

The denominator of the Wald formula is

Wald-denominator=E [DijZi = 1]� E [DijZi = 0] :

We can use exactly the same principles as for the numerator, and arrive at

Wald-denominator = P (D1i �D0i > 0)E [(D1i �D0i) jD1i �D0i > 0]

= P (D1i �D0i > 0) .

Hence

E [YijZi = 1]� E [YijZi = 0]
E [DijZi = 1]� E [DijZi = 0]

= E [(Y1i � Y0i) jD1i �D0i > 0]

= E [�ij�1i > 0]

i.e. the IV estimator identi�es LATE.

[Example: Simulating LATE. Appendix 2]
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Summing up, we have seen how we can identify LATE - i.e. the average e¤ect of treatment for the

subpopulation of compliers. Compliers in the speci�c application referred to above are individuals who

were induced by the draft lottery to serve in the military. Never-takers who would not serve irrespective

of their lottery number, and always-takers, who would volunteer irrespective of their lottery number,

clearly do not belong to this group.

Is LATE an economically interesting quantity? Perhaps. In any case, it may be that we cannot

identify average treatment e¤ects for the population because we cannot identify the average causal e¤ect

of treatment amongst the never-takers or the always-takers, if our instrument has no e¤ect on individuals

belonging to these groups.

3. Generalizing LATE

Reference: Section 4.5 in Angrist-Pischke

You have seen how the LATE theorem applies to stripped down model: a single dummy instrument

is used to estimate the impact of a dummy treatment with no covariates. Whilst elegant, it has to be

said this is a bit of a special case. (What about continuous variables? Or covariates?)

AP discuss three ways of extending the basic LATE framework:

1. LATE with multiple instruments. The LATE is always closely connected to the underlying in-

strument, since whether someone is a complier likely depends on what the instrument is. Di¤erent

instruments will therefore identify di¤erent LATE:s. If we have, say, two instruments with distinct

complier groups and thus distinct LATEs, using 2SLS with both instruments simultaneously pro-

duces a linear combination of the instrument-speci�c LATEs. Whether or not that is interesting

clearly depends on the context.

2. Covariates - where did the x-variables go? Clearly if have instruments that are randomly assigned,

we don�t really need to control for x-variables (as these will be orthogonal to the instrument anyway).

However, the instrument may in fact covary with x-variables that also impact potential outcomes,

in which case we should control for x-variables.
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3. Variable treatment intensity. Our treatment variable, rather than being binary, can take on more

than two values - e.g. years of schooling.

The econometric tool is still 2SLS. Let�s have a closer look at these three settings.

3.1. LATE with multiple instruments

Consider a pair of dummy instruments, z1i and z2i. Assume these are mutually exclusive - i.e. together

with a constant, they exhaust the information in the instrument set (e.g. z1i = 1 if someone is born in

May, June, July, August; z2i = 1 if born in September or later in the year). We assume monotonicity

holds for each of the instruments with a positive �rst stage. The author assumptions underlying the

LATE theorem are assumed to hold as well.

This means we could obtain two di¤erent LATEs:

� If we were to use only z1i we would get the LATE for the compliers associated with z1i (e.g. those

for whom being born in the May-August period altered their schooling; had these individuals not

been born in this period, their schooling would di¤er (perhaps not the most intuitive example)).

� If we were to use only z2i we would get the LATE for the compliers associated with z2i.

These populations may not be the same; and if they have systematically di¤erent treatment e¤ects,

the two LATEs would di¤er. This is because the LATE is instrument-speci�c.

Suppose now we use both z1i and z2i in a 2SLS procedure. How should we interpret the estimated

treatment e¤ect?

Your econometric intuition at this stage suggests that you will get some kind of average of the two

LATEs described above. This is indeed the case. Let

�j =
Cov (Yi; zji)

Cov (Di; zji)
; j = 1; 2

denote the two IV estimands (the two LATEs). Now consider our 2SLS estimator based on a �rst-stage

in which both z1i and z2i are included.
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The �rst stage will give us

D̂i = �11z1i + �12z2i;

where �11 and �12 are positive numbers (there should be a constant here too but its omission doesn�t

a¤ect the point). By de�nition,

�2SLS =
Cov

�
Yi; D̂i

�
Cov

�
D̂i; D̂i

� = Cov
�
Yi; D̂i

�
Cov

�
Di; D̂i

� ;
hence

�2SLS =
�11Cov (Yi; z1i)

Cov
�
D̂i; D̂i

� +
�12Cov (Yi; z2i)

Cov
�
D̂i; D̂i

�
=

�11Cov (Di; z1i)

Cov
�
D̂i; D̂i

� Cov (Yi; z1i)

Cov (Di; z1i)

+
�12Cov (Di; z2i)

Cov
�
D̂i; D̂i

� Cov (Yi; z2i)

Cov (Di; z2i)

�2SLS =  �1 + (1�  ) �2;

where

 =
�11Cov (Di; z1i)

�11Cov (Di; z1i) + �12Cov (Di; z2i)

is a weight bounded between zero and one.

Note that  depends on the relative strength of each instrument in the �rst stage. In other words,

2SLS is a weighted average of the causal e¤ects for instrument-speci�c compliant subpopulations (the

two LATEs).

3.2. Covariates in the heterogeneous e¤ects model

The main reason covariates are included in a regression is that the conditional independence and exclusion

restrictions underlying IV estimation may be more likely valid after conditioning on covariates.

For example, in the case of draft eligibility, older cohorts were more likely to be eligible be design,
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and because earnings covary with age (experience), draft eligibility is a valid instrument only conditional

on year of birth.

IV estimation with covariates in the present framework may be justi�ed by a conditional independence

assumption of the following type:

Yi0; Yi1; Di0; Di1 independent of zijXi;

i.e. think of the IV as being as good as randomly assigned, conditional on Xi.

� If we maintain the assumption that the causal e¤ect of interest is constant, we are of course in very

familiar territory: just include Xi as a control vector in the �rst and second stage of your 2SLS

estimator.

� To relax the constant e¤ects assumption, we might be prepared to specify the causal e¤ect as

Yi1 � Yi0 = � (X) ;

i.e. as dependent on observable characteristics. This model can be estimated by adding interactions

between D and X to the second stage and interactions between z and X in the �rst stage. You

would then have more than one �rst-stage regression:

Di = X 0
i�00 + �01zi + ziX

0
i�02 + �0i

DiX
1
i = X 0

i�00 + �01zi + ziX
0
i�02 + �0i

(:::)

DiX
K
i = X 0

i�00 + �01zi + ziX
0
i�02 + �0i
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assuming there are K covariates. The second stage would in this case be speci�ed as

Yi = �0Xi + �0Di +DiX
0
i�1 + �i;

which implies

� (X) = �0 +X
0
i�1

� The heterogeneous e¤ects model underlying the LATE theorem can also be extended to allow for

covariates. Unfortunately, interpretation becomes less straightforward. We now have covariate-

speci�c LATEs of the form

� (Xi) � E [Y1i � Y0ijX;D1i > D0i] :

If we work with a �rst-stage in which dummies for each value taken by the X-variable are used as

predictors, the 2SLS estimator will produce a weighted average of these covariate-speci�c LATEs,

where the weights will be higher for covariate values where the instrument creates more variation

in �tted values.

� This estimator is not very attractive. Almost certainly, the �rst stage will contain too many

instrument resulting in bias towards the OLS estimator. Moreover, interpretation of the 2SLS

estimate of the causal e¤ect is not straightforward (a weighted average of.... what exactly?).

� If we modify the �rst stage, perhaps using just X rather than dummy variables for each value of

X, this may be an acceptable approximation. See Theorem 4.5.2 in AP for details.

4. Variable Treatment Intensity

Now consider a treatment variable that can take more than two values, e.g. schooling. De�ne potential

outcomes as

Ysi � fi (S) :
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Suppose Si takes on values in the set �
0; 1; :::; �S

	
;

implying there are �S causal e¤ects, Ysi � Ys�1;i. A linear causal model assumes these are the same for

all s and i, "...obviously unrealistic assumptions" according to AP.

However, you can still justify using 2SLS and a linear speci�cation of the form

Yi = �+ �Si + �i:

It can be shown that �2SLS in this case is a weighted average of unit causal e¤ects, where the weights

are determined by how the compliers are distributed over the range of Si.

For example, returns to schooling estimated using quarter of birth come from shifts in the distribution

of grades completed in high school (why?). Other instruments, such as distance to school, act elsewhere

on the schooling distribution and therefore capture a di¤erent sort of return.

So, you see, it�s all about interpretation!
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Måns Söderbom 
 
The Local Average Treatment Effect 
 
1. Simulating LATE in Stata 
 
Stata code: 
clear 
set seed 54687 
set obs 20000 
 
/* first, randomly assign the instrument  - say half-half */ 
ge z = uniform()>.5 
 
/* then, generate never-takers (d00), always-takers (d11) and compliers 
(d01), independent of z */ 
 
ge d00=(_n<=5000)   
ge d11=(_n>5000 & _n<=10000) 
ge d01=(_n>10000) 
 
/* observed outcomes: always zero for never-takers, always one for 
always-takers, depends on the IV for compliers */ 
ge D=d11+z*d01  
 
/* now give the three groups different LATE. Without loss of 
generality, assume within group homogeneity. */ 
 
ge late=-1 if d00==1 
replace late=0 if d11==1 
replace late=1 if d01==1 
 
/* next generate potential outcomes y0,y1 */ 
 
ge y0=0.25*invnorm(uniform()) 
ge y1=y0+late 
 
/* actual outcome depends on treatment status */ 
ge y = D*y1+(1-D)*y0 
 
/* the average treatment effect is simply the sample mean of late */ 
sum late 
 
/* OLS doesn't give you ATE or LATE */ 
reg y D 
 
/* IV gives you the LATE for the compliers */ 
ivreg y (D=z) 
 
exit 
 

 1



 2

Results: 
 
. /* the average treatment effect is simply the sample mean of late */ 
. sum late 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
        late |     20000         .25    .8291769         -1          1 
 
.  
. /* OLS doesn't give you ATE or LATE */ 
. reg y D 
 
      Source |       SS       df       MS              Number of obs =   20000 
-------------+------------------------------           F(  1, 19998) = 6631.34 
       Model |  1246.68658     1  1246.68658           Prob > F      =  0.0000 
    Residual |  3759.60651 19998  .187999125           R-squared     =  0.2490 
-------------+------------------------------           Adj R-squared =  0.2490 
       Total |  5006.29309 19999  .250327171           Root MSE      =  .43359 
 
------------------------------------------------------------------------------ 
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           D |   .4993491    .006132    81.43   0.000     .4873298    .5113684 
       _cons |   .0005316   .0043511     0.12   0.903     -.007997    .0090602 
------------------------------------------------------------------------------ 
 
.  
. /* IV gives you the LATE for the compliers */ 
. ivreg y (D=z) 
 
Instrumental variables (2SLS) regression 
 
      Source |       SS       df       MS              Number of obs =   20000 
-------------+------------------------------           F(  1, 19998) = 5048.40 
       Model | -86.6843722     1 -86.6843722           Prob > F      =  0.0000 
    Residual |  5092.97746 19998   .25467434           R-squared     =       . 
-------------+------------------------------           Adj R-squared =       . 
       Total |  5006.29309 19999  .250327171           Root MSE      =  .50465 
 
------------------------------------------------------------------------------ 
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           D |   1.015767   .0142961    71.05   0.000     .9877453    1.043788 
       _cons |  -.2594847   .0080341   -32.30   0.000    -.2752322   -.2437373 
------------------------------------------------------------------------------ 
Instrumented:  D 
Instruments:   z 
------------------------------------------------------------------------------ 

 
Recall: Treatment effect is 1.0 for the compliers, 0.0 for the always-takers and -1.0 for 
the never-takers. 


