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1. Introduction

Recall from lecture 3 that, under the conditional independence assumption (CIA), we can correct for

selection bias by conditioning on a set of observable variables. This approach amounts to moving the

unobservable variable from the residual to the speci�cation itself.

The instrumental variable approach, in contrast, leaves the unobservable factor in the residual of the

structural equation, instead modifying the set of moment conditions used to estimate the parameters.

Outline of today�s lecture:

� Recap & motivation of instrumental variable estimation

� Identi�cation & de�nition of the just identi�ed model

� Two-stage least squares (2SLS). Overidenti�ed models.

� Generalized method of moments (GMM)

� Inference & speci�cation tests

� IV estimation in practice - problems posed by weak & invalid instruments.

References:

Angrist and Pischke, Chapter 4.1-4.2 (4.1.3 is optional); Greene, 12.3-4.

Murray, Michael P.(2006) "Avoiding Invalid Instruments and Coping with Weak Instruments," Journal

of Economic Perspectives, 2006, vol. 20, issue 4, pages 111-132.

2. IV and Causality

Angrist and Pischke (AP) tell the IV story in two iterations:

1. In a restricted model with constant e¤ects

2. In an unrestricted framework with heterogeneous potential outcomes
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The second interpretation of the IV estimator has become very popular in the recent literature.

However, exploring the mechanics of the IV estimator is easier if we impose homogeneous e¤ects, so

that�s where we will begin.

We focus on the following potential outcomes model for earnings (introduced in the previous lecture):

Ysi � fi (S) ;

fi (S) = �+ �S + �i;

�i = A0i
 + vi;

where we shall refer to Ai as a vector of �ability�variables, and 
 is a vector of population regression

coe¢ cients so that vi and Ai are uncorrelated by construction.

For now, we also assume

E (viSi) = 0;

implying that the variables Ai are the only reason why �i and S are correlated. Hence, if Ai were

observable, we would estimate the following "long" regression using OLS:

Yi = �+ �Si +A
0
i
 + vi:

Now suppose that Ai is unobserved. This implies our estimable equation takes the following form:

Yi = �+ �Si + �i:

where �i = A0i
 + vi is the compound error term. Can we still estimate the parameter of interest

�? Clearly OLS won�t work now, since there will be omitted variables bias. But if we have access to an

instrument zi that is:

1. Correlated with the causal variable of interest (instrument relevance), E (ziSi) 6= 0; and
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2. Uncorrelated with unobservable determinants of the dependent variable (instrument validity; or

exclusion restriction), E (zi�i) = 0

then we can use instrumental variables techniques to estimate �. The latter condition can be used to

derive an expression for �. Using matrix notation as follows

xi =

�
1 Si

�
zi =

�
1 z

�
;

� =

2664 �

�

3775
we write the causal relation of interest as

Yi = xi� + �i;

and the moment conditions (or orthogonality conditions) as

E (z0i�i) = 0:

Combining these two equations, we get

E (z0i�i) = 0

E (z0i (Yi � xi�)) = 0

E (z0ixi)� = E (z0iYi) ;

which is a system of two linear equations. Assuming we can invert E (z0x) ; we can thus solve for �:

� = [E (z0ixi)]
�1
E (z0iYi) : (2.1)
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This solves for our two unknown parameters �0 = (�; �)0 from two linear equations, hence this model is

exactly identi�ed.1 It follows from (2.1) that

� =
Cov (Yi; zi)

Cov (Si; zi)
=
Cov (Yi; zi) =V (zi)

Cov (Si; zi) =V (zi)
: (2.2)

This shows that � is the ratio of the population regression of Yi on zi (called the reduced form) to the

population regression of Si on zi (called the �rst stage); that is:

Si = �0 + �1zi + ei;

Yi = �0 + �1zi + ui;

implies � = �1=�1. The IV estimator of � is the sample analog of (2.2).

Note the following:

� It is now obvious why the instrument must be relevant, i.e. correlated with the causal variable of

interest. The relevance condition can be tested, for example by computing the t-statistic associated

with �̂1 in the �rst stage regression. If the �rst stage is only marginally signi�cantly di¤erent from

zero, the IV estimates are unlikely to be informative - more about this later.

� The validity of the exclusion restriction, however, cannot be tested, because the condition involves

the unobservable residual. Therefore, this condition has to be taken on faith, which is why relating

it to economic theory is very important for the analysis to be convincing. We return to this at the

end of this lecture, drawing on Michael Murray�s (2006) survey paper.

A corollary of the exclusion restriction and instrument relevance is that the instruments cannot be

explanatory variables in the original equation.

� Hence, if zi is a valid and informative instrument, zi impacts on Yi but only indirectly, through the

variable Si.

1For the matrix E (z0x) to be invertible it must have full rank, i.e. rank E (z0x) = 2 in our case.
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� In what sense is an instrument very di¤erent from a proxy variable?

Finding an IV: Illustration Good instruments come from a combination of

� institutional knowledge(e.g. costs of schooling may vary across regions due to di¤erent regional

policies)

� ideas about the processes determining the variable of interest

Keeping this in mind, let�s have a closer look at the study by Angrist and Krueger (1991; QJE).

Recall that these authors exploit variation - supposedly exogenous variation - in years of schooling driven

by compulsory schooling in order to identify the returns to education for U.S. men.

� Most states require students to enter school in the calendar year in which they turn 6. Hence, those

born late in the year are young for their grade.

� Students are required to remain in school only until their 16th birthday.

� So someone born early in the year may drop out in grade G while someone born late may not drop

out until grade G+ 1.

� Hence the �natural experiment�: children are compelled to attend school for di¤erent lengths of

time, depending on their birthdays.

� Have a look at Figure 4.1.1 in AP: Panel (A) shows that those born early tend to have less education,

on average, than those born late - consistent with the observation that those born early can exit at

a lower level (G vs. G+ 1; see above).

� Note that Panel A is basically the �rst stage regression: the graph is interpretable as predicted

schooling based on a regression where years of schooling is the dependent variable, and year-of-

birth and quarter-of-birth (and their interactions) are the explanatory variables

� Panel B shows how the average weekly wage varies with quarter of birth and year of birth. This is

the reduced form regression, shown graphically. Findings:
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�Older men have higher earnings (due to experience)

�Men born in early quarters have lower earnings.

� The latter result, combined with the patterns in the �rst stage regression, is consistent with the

�story�about how quarter of birth impacts on earnings. Importantly, because quarter of birth is

likely unrelated to innate ability, it may be a valid instrument.

Mathematical representation of the story above:

Si = X 0
i�10 + �11zi + �1i

Yi = X 0
i�20 + �21zi + �2i:

Now interpret the relationships just discussed within this framework:

� What are the endogenous variables?

� What are the exogenous variables?

� What are the exogenous covariates?

� What�s the expression for the IV estimate of the return to education (�)?

2.1. Two-Stage Least Squares

The reduced-form equation

Yi = X
0
i�20 + �21zi + �2i

can be derived by substituting the �rst-stage regression

Si = X
0
i�10 + �11zi + �1i
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into the causal relation of interest

Yi = X 0
i�+ �Si + �i

Yi = X 0
i�+ � (X

0
i�10 + �11zi + �1i) + �i

Yi = X 0
i�20 + �21zi + �2i:

Alternatively, the causal relation of interest be written as

Yi = X
0
i�+ � [X

0
i�10 + �11zi] + f��1i + �ig ;

where the term inside [:] is the population �tted value from the �rst stage regression. Since X 0
i and zi

are exogenous, they are uncorrelated with the equation residual f��1i + �ig.

In practice, we almost always work with data from samples. Applying OLS to the �rst-stage regression

results in �tted values that are consistently estimated:

Ŝi = X
0
i�̂10 + �̂11zi + �1i:

And the coe¢ cient on Ŝi in the regression of Yi on Xi and Ŝi is called the two-stage least squares (2SLS)

estimator of �.:

Yi = X
0
i�+ �Ŝi +

n
�i + �Si � �Ŝi

o
:

Note that literally proceeding in two steps will give us the 2SLS estimate of �, however the standard

errors reported from an OLS regression for the second stage will be wrong. So in practice we always use

some software routine like ivreg (Stata) to obtain 2SLS estimates and correct standard errors.

Multiple instruments.

� We considered above the simple IV estimator with one endogenous explanatory variable, and one

instrument. This is a case of exact identi�cation. Similarly, if you have two endogenous explana-
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tory variables and two instruments, the model is again exactly identi�ed.

� If you have less instruments than endogenous regressors, the model is underidenti�ed. This means

you will not be able to estimate the parameter(s) of interest.

� If you have more instruments than endogenous regressors, the model is overidenti�ed.

� In practice it is often a good idea to have more instruments than strictly needed, because the

additional instruments can be used to increase the precision of the estimates, and to construct tests

for the validity of the overidentifying restrictions (which sheds some light on the validity of the

instruments).

� But be careful! While you can add instruments appealing to this argument, a certain amount of

moderation is needed here. More on this below.

� Consider again the Angrist-Krueger study. Suppose we have 3 instrumental variables for Si:

z1i; z2i; z3i. These would be dummies for �rst-, second-, and third-quarter births in this context, all

of which are assumed uncorrelated with the residual �i. The �rst-stage equation becomes:

Si = X
0
i�10 + �11z1i + �12z2i + �13z3i + �1i; (2.3)

while the second stage is the same as previously; i.e.

Yi = X
0
i�+ �Ŝi +

n
�i + �Si � �Ŝi

o
;

but with the predictions now based on eq (2.3).Notice that we are now using all the instruments

simultaneously in the �rst stage regression. By de�nition, the OLS estimator of the �rst stage

regression will construct the linear combination of the instruments most highly correlated with

Si. By assumption all the instruments are exogenous, hence this procedure retains more exogenous

variation in Si than would be the case for any other linear combination of the instruments.
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� Another way of saying this is that the instruments produce exogenous variation in predicted Si,

and OLS estimation in the �rst stage ensures there is as much such variation as possible. With

fewer instruments there would be less exogenous variation in this variable, hence such estimators

would not be e¢ cient.

� What is the relevance condition, in this case where there are more instruments than endogenous

regressors? In the current example, where we only have one endogenous regressor, it is easy to see

that at least one of �j in the �rst stage has to be nonzero for the model to be identi�ed.

You would be forgiven for thinking that, in practical applications, we should then use as many

instruments as possible. After all, we said that including more instruments improves e¢ ciency of the

2SLS estimator.

However, it is now well known that having a very large number of instruments, relative to the sample

size, results in potentially serious bias, especially if some/many/all of the instruments are only weakly

correlated with the endogenous explanatory variables. As we shall see below, using too many (weak)

instruments tends to bias the 2SLS estimator towards the OLS estimator - i.e. the estimator we�re trying

to move away from! (What would happen if your number of instruments is equal to the number of

observations?)

The advice on how to proceed in practice is to use a moderately overidenti�ed model, trading o¤ less

e¢ ciency for less bias. More on this below.

Now have a look at the Angrist-Krueger results, reproduced in Table 4.1.1. Note the following:

� 2SLS estimates are mostly larger than the corresponding OLS estimates, which suggests omitted

ability is not a serious problem for the OLS estimator

� There are many instruments in column (7). The idea is to improve precision (indeed standard errors

fall somewhat), but this may also lead to bias as discussed above.

General expression for the 2SLS estimator (Greene, 12.3.3) De�ne Z;X;Y to be data matrices.

Suppose there are K explanatory variables in the X matrix (including a constant), and L instruments
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in the Z matrix (including a constant). The dimensions of the data matrices are thus as follows: Z is

N � L, X is N �K, and Y is N � 1).

Recall that, for the 2SLS estimator, we have

�̂
2SLS

=
�
X̂
0
X̂
��1

X̂
0
Y ; (2.4)

which is the formula for the OLS estimator where we use predicted instead of actual values of the

explanatory variables (for the exogenous variables in X, predicted and actual values coincide, of course).

Now write the 2SLS estimator in terms of the raw data vectors Z and X. Notice �rst that

X̂ = Z
�
Z 0Z

��1
Z 0X;

(this is simply using the OLS formula for the K dependent variables in the �rst stage - i.e. the K

explanatory variables in the second stage). I can now plug this into (2.4):

�̂
2SLS

=
�
X 0Z

�
Z 0Z

��1
Z 0Z

�
Z 0Z

��1
Z 0X

��1
X 0Z

�
Z 0Z

��1
Z 0Y

�̂
2SLS

=
�
X 0Z

�
Z 0Z

��1
Z 0X

��1
X 0Z

�
Z 0Z

��1
Z 0Y:

A common way of writing this is as

�̂
2SLS

=
�
X 0P zX

��1
X 0P zY;

where P z = Z
�
Z 0Z

��1
Z 0 is known as the projection matrix.
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2.2. The Wald Estimator

The simplest IV estimator uses a single dummy instrument to estimate a model with one endogenous

regressor and no covariates. The causal relation of interest is thus speci�ed as

Yi = �+ �Si + �i;

where �i may or may not be correlated with Si. Given that the instrument is a dummy variable, we have

Cov (Yi; zi) = E (Yizi)� E (Yi)E (zi)

Cov (Yi; zi) = pE (Yijzi = 1)� E (Yi) p

Cov (Yi; zi) = pE (Yijzi = 1)� (pE (Yijzi = 1) + (1� p)E (Yijzi = 0)) p

Cov (Yi; zi) = pE (Yijzi = 1) [1� p]� (1� p)E (Yijzi = 0) p

Cov (Yi; zi) = fE (Yijzi = 1)� E (Yijzi = 0)g p [1� p] :

Along similar lines we can show that,

Cov (Si; zi) = fE (Sijzi = 1)� E (Sijzi = 0)g p [1� p] :

Recall � = Cov(Yi;zi)
Cov(Si;zi)

; it follows that for the present model we have,

� =
E (Yijzi = 1)� E (Yijzi = 0)
E (Sijzi = 1)� E (Sijzi = 0)

:

This beautiful equation is the population analog of theWald estimator. Interpretation is straightfor-

ward:

� The key assumption underlying the IV estimator is that the only reason for any relation between

the dependent variable and the instrument (the numerator) is the e¤ect of the instrument on the

causal variable of interest (the denominator).
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� In the context of a dummy instrument, it is therefore natural to divide the reduced form di¤erence

in means by the corresponding �rst-stage di¤erence in means.

Perhaps the following decomposition is helpful for the intuition here:

�Y

�X
=
�Y

�Z

�
�X

�Z

��1
=
�Y=�Z

�X=�Z
:

3. Variance of the 2SLS estimator

Note: This draws on Greene, section 12.3.

Recall the general de�nition of the 2SLS-estimator:

�̂
2SLS

=
�
X 0Z

�
Z 0Z

��1
Z 0X

��1
X 0Z

�
Z 0Z

��1
Z 0Y

�̂
2SLS

=
�
X 0P zX

��1
X 0P zY

where P z = Z
�
Z 0Z

��1
Z 0 is the projection matrix. Under homoskedasticity (constant variance of the

error term), the covariance matrix has the same form as OLS, but in terms of predicted values:

Avâr
�
�̂
2SLS

�
= �̂2

�
X̂
0
X̂
��1

:

Recall:

X̂ = Z
�
Z 0Z

��1
Z 0X

(OLS formula applied to the �rst stage), thus

X̂
0
X̂ = X0Z

�
Z0Z

��1
Z0Z

�
Z0Z

��1
Z0X;

i.e.

X̂
0
X̂ = X0Z

�
Z0Z

��1
Z0X
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hence

Avâr
�
�̂
2SLS

�
= �̂2

�
X 0Z

�
Z 0Z

��1
Z 0X

��1
; (3.1)

where Avâr means �asymptotic variance�,

�̂2 = (N �K)�1 û0û;

and

û = Y �X �̂
2SLS

;

is the N � 1 column vector of estimated residuals. Notice that these residuals are not the residuals from

the second-stage OLS regression of the dependent variable Y on the predicted variables of X.

You might not think the variance formula above terribly enlightening. Some intuition can be gained

by returning to the single-regressor single-instrument model

y = �1 + �2x2 + u;

x2 = �1 + �2z2 + r:

The variance of �̂
IV

2 then simpli�es to

Avâr
�
�̂
IV

2

�
= �̂2

 P
i (~z2i)

2P
i (~x2i~z2i)

2

!

Avâr
�
�̂
IV

2

�
= �̂2

1

N

X
i

(~z2i)
2

N

�
NP

i (~x2i~z2i)

�2
Avâr

�
�̂
IV

2

�
= �̂2

1

N

�2z

cov (x2i; z2i)
2

Avâr
�
�̂
IV

2

�
= �̂2

1

N�2xz�
2
x

;

where I have sample-demeaned the variables to eliminate the constants, and �xz = cov (z2i; x2i) = (�z�x)

is the correlation between x2 and z2.
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Now notice the following:

� Just like the OLS estimator, the variance of the IV estimator decreases to zero at a rate of (1=N).

� Just like the OLS estimator, the variance of the IV estimator falls, as the variance of the explanatory

variable increases; and increases as the variance of the residual increases.

� It is now obvious why the assumption that the instrument is correlated with the explanatory variable

is crucial: as �xz tends to zero, the variance will tend to in�nity.

� It�s also obvious why your standard errors rise as a result of using instruments (compared to OLS)

- since OLS amounts to using x as an instrument for itself, thus resulting in �2xz = 1; whenever x

and z are not perfectly correlated, the variance will be higher.

Heteroskedasticity-Robust Inference for 2SLS. If the error term is heteroskedastic, issues similar

to those for OLS emerge for 2SLS:

� The 2SLS estimator is no longer asymptotically e¢ cient (but it remains consistent),

� The variance formula (3.1) is no longer valid.

The two most common ways of guarding against heteroskedasticity are:

1. Use a heteroskedasticity-robust estimator of the variance matrix:

AvârROBUST

�
�̂
2SLS

�
=
�
X̂
0
X̂
��1 NX

i=1

û2i x̂
0
ix̂i

!�
X̂
0
X̂
��1

:

Notice how similar this is to the robust variance estimator for OLS. Stata reports standard errors

based on this estimator if you add �robust�as an option in ivreg2.

4. Testing for exogeneity and validity of overidentifying restrictions

Whenever we use instrumental variables techniques we should carry out tests for exogeneity and for the

validity of the overidentifying restrictions.
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4.1. Testing for exogeneity: 2SLS

� Note: this is not discussed in great detail in AP, so I draw on Greene, Section 12.4. The exposition

is also inspired by Chapter 6.2.1 in Wooldridge (2003; Econometric Analysis of Cross Section and

Panel Data)

The main reason for using 2SLS or GMM is that we suspect that one or several of the explanatory

variables are endogenous. If endogeneity is in fact not a problem, your instrumental variable estimator

will be consistent (provided, of course, that the instruments are valid and relevant), but ine¢ cient (i.e.

higher variance than for OLS, given that OLS is valid). Therefore it is good practice to test for exogeneity.

If we can accept the hypothesis that the explanatory variables are uncorrelated with the residual we are

better o¤ relying on OLS.

Consider the model

y1 = z1�1 + �1y2 + u1;

where z1 is a (1� L1) vector of exogenous variables (including a constant), �1 is (L1 � 1), and u1 is the

error term. The variable y2 is potentially endogenous. I further assume that a set of (valid and relevant)

instruments are available, so that

E (z0u) = 0

holds by assumption, where z contains all the exogenous explanatory variables in the structural equation

z1 and at least one instrument.

We are not sure if y2 is endogenous or exogenous. If it is endogenous, we have

E (y02u) 6= 0;
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and I would identify the model relying on E (z0u) = 0 only. However, if y2 is really exogenous, then one

additional moment condition becomes available:

E (y02u) = 0:

In that case OLS will be �ne. The null hypothesis, then, is that y2 is exogenous.

H0 : E (y
0
2u) = 0.

There are several ways of carrying out a test like this in practice.

4.1.1. The original Hausman (1978) test

Hausman (1978) proposed a test for exogeneity based on a comparison of the OLS and 2SLS estimators

of �1 =
�
�01; �1

�0
. The general idea is very intuitive: if y2 is in fact exogenous, then OLS and 2SLS

estimators should di¤er only because of sampling error - i.e. they should not give signi�cantly di¤erent

results. Hausman showed that, under the null hypothesis, the test statistic

H =
�
�̂
OLS

1 � �̂2SLS1

�0 h
Avâr

�
�̂
2SLS � �̂OLS1

�i�1 �
�̂
OLS

1 � �̂2SLS1

�

follows a Chi-squared distribution where the number of degrees of freedom equals the number of explana-

tory variables in the model. Notice the quadratic form of this expression. A complication here is posed

by the calculation of Avâr
�
�̂
2SLS

1 � �̂OLS1

�
: Hausman showed, however, that, asymptotically,

Avâr
�
�̂
2SLS

1 � �̂OLS1

�
= Avâr

�
�̂
2SLS

1

�
�Avâr

�
�̂
OLS

1

�
;

which is very useful. Hence, in practice the Hausman statistic is given by

H =
�
�̂
OLS

1 � �̂2SLS1

�0 h
Avâr

�
�̂
2SLS

1

�
�Avâr

�
�̂
OLS

1

�i�1 �
�̂
OLS

1 � �̂2SLS1

�
:
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Unfortunately, this particular test often proves problematic to use. The main problem is that, in

small samples, there is no guarantee that Avâr
�
�̂
2SLS

1

�
> Avâr

�
�̂
OLS

1

�
. Clearly, if that happens we

obtain a negative test statistic, which is hard to interpret given that H is non-negative in theory (follows

a Chi-squared distribution under the null).

4.1.2. A regression-based Hausman test

Hausman has also derived a regression-based form of the test just outlined, which is less awkward to use

in practice. This test, which is asymptotically equivalent to the original form of the Hausman test, is

very general and very easy to implement in practice. To motivate this test, consider the reduced form

equation (�rst stage):

y2 = z� + v2;

where z is uncorrelated with v2 by de�nition; and the structural equation

y1 = z1�1 + �1y2 + u1;

where u1 is uncorrelated with z, by assumption. Now think about the implications of y2 being either i)

exogenous or ii) endogenous.

� If y2 is exogenous, i.e. E (y2u1) = 0, then itmust be that E (v2u1) = 0, given that z is uncorrelated

with v2 and u1 (otherwise y2 would be correlated with u1)

� If y2 is endogenous, i.e. E (y2u1) 6= 0, then it must be that E (v2u1) 6= 0, given that z is uncorre-

lated with v2 and u1 (there is no other way y2 can be correlated with u1).

It is thus clear that our exogeneity test can be formulated as

H0 : E (v2u1) = 0;
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i.e. the null hypothesis is that the two residuals are uncorrelated. Now write the linear projection of the

residual u1 on the reduced form error u2:

u1 = �1v2 + �1:

This implies E (v2; u1) = �1�
2
v, hence we can rewrite the null hypothesis of exogeneity as

H0 : �1 = 0:

Thus, y2 is exogenous if and only if �1 = 0. To see how this is useful from an applied point of view, now

replace u1 by �1v2 + �1 in the structural equation:

y1 = z1�1 + �1y2 + �1v2 + �1:

Of course, v2 is not directly observed, but it can be estimated from the reduced form equation:

v̂2 = y2 � z�̂;

and we can then run the structural regression

y1 = z1�1 + �1y2 + �1v̂2 + error; (4.1)

using OLS (note!) and actual, not predicted, y2.

� The exogeneity test can now be done as a simple t-test of the null that �1 = 0.

� A heteroskedasticity-robust t-test can be used if you suspect there is heteroskedasticity under the

null.

� Incidentally, using OLS to estimate (4.1) gives estimates of the parameters �1,�1 that are numeri-
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cally identical to 2SLS. However, the OLS standard errors associated with (??) are valid under the

null that �1 = 0; but not under the alternative that �1 6= 0: In the latter case, the conventional

standard errors are downward biased. One implication of this is that, if you do not reject the null

hypothesis based on standard errors that are possibly too low, you certainly wouldn�t do so based

on the correct standard errors.
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4.2. Testing for validity of overidentifying restrictions: 2SLS

� In an exactly identi�ed model we cannot test the hypothesis that the instrument is valid, i.e. that

the exclusion restriction is a valid one. In that case, the assumption that the instrument is valid will

essentially have to be taken on faith - i.e. you have to believe the theoretical arguments underlying

the exclusion restriction.2

� If our model is overidenti�ed, we can test for the validity of the overidentifying restrictions.

Please note that this is not a test of the hypothesis that "the instruments are valid". Rather, it is

as follows:

�Under the assumption - which we can�t test - that G1 instruments are valid with certainty,

where G1 is the number of endogenous explanatory variables, we can test the null hypoth-

esis that the Q1 = L2 � G1 overidentifying instruments (where L2 is the total number of

instruments) are orthogonal to the residual in the structural equation.

� So what�s the point of considering this test, then, given that it does not shed light on the issue that

we are interested in (which is instrument validity, in general)? You can view the OVERID test as

a �rst hurdle that needs to be overcome in the context of IV estimation, in the following sense:

� If the OVERID test indicates you should reject the null hypothesis, then this is pretty clear

evidence your model is mis-speci�ed. You then have no choice but to respecify the model. When

doing so, think carefully about the implications of the test outcome. Whenever the OVERID

test implies rejection of the null, this usually means at least one of the instruments would have a

2To see the intuition of why we cannot test for the validity of this assumption, consider the exactly identi�ed model

y1 = �0 + �1y2 + u1;

y2 = �0 + �1z1 + v2:

Express the structural equation as a function of the predicted value of Y2:

y1 = �0 + �1 (�̂0 + �̂1z1) + u1

= (�0 + �1�̂0) + �1 (�̂1Z1) + u1:

We cannot test the hypothesis cov (z1; u1) = 0, simply because u1 is not observed and, without further information, we
cannot obtain an estimate of u1 unless we assume cov (z1; u1) = 0: That is, the estimate of u1 will be uncorrelated with z1
by construction.
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signi�cant e¤ect in the structural equation. Think about the economics of that. For example, if

you are instrumenting education with distance to primary school at the age of seven, and mother�s

education, you might think mother�s education is a dubious instrument as it may be correlated with

unobserved ability. So the next step could be to re-estimate the model without mother�s education

in the instrument set.

� If the OVERID test suggests you should accept the null hypothesis, then what to make of this

depends largely on the faith you have in your instruments in general. If you are almost certain

that G1 instruments are valid, then you might be inclined to conclude that the model passing the

OVERID test means that all your instruments are valid (perhaps some of your instruments are less

credible than others, in which case this might be useful knowledge).

Intuition of the OVERID test. Suppose the model is

y2 = �0 + �1z1 + �2z2 + v2

y1 = �0 + �1y2 + u1;

which is overidenti�ed. We know we can obtain IV estimates of the structural equation here by using

only z1 as an instrument. Because in that case z2 is not used in the estimation, we can check whether

z2 and the estimated residual û1 are correlated. If they are, then z2 would not be a valid instrument,

under the assumption that z1 is a valid instrument (we need this assumption, otherwise the model is not

identi�ed of course).

Clearly we can then reverse the roles of z1 and z2 and examine whether z1 is uncorrelated with û1 if

z2 is used as an instrument.

Which test should we use? It turns out that this choice does not matter. Remembering that, in this

case, the validity of at least one IV must be taken on faith.
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Mechanics of the basic OVERID test for 2SLS. Such a test can be carried out as follows:

1. Estimate the structural equation with 2SLS / IV and obtain the estimated residuals û1:

2. Regress û1 on all exogenous variables (in the example above, z1 and z2). Obtain the R-squared.

3. Under the null hypothesis that the instruments are uncorrelated with u1, the statistic N�R2 follows

a chi-squared distribution with Q1 degrees of freedom. If N �R2 exceeds the relevant critical value

then we conclude that some of the instruments are not uncorrelated with u1, in which case they

are not valid instruments.

There is an equivalent way of carrying out the OVERID test, which is based on the criterion function

that is (implicitly) being minimized to yield the 2SLS results. See Section 4.2.2 in AP for a brief discussion.

[Discuss Card (1995); See section 1 in the appendix]

5. Discussion: Using IV in practice

Reference: Murray, Michael P.(2006) "Avoiding Invalid Instruments and Coping with Weak Instruments,"

Journal of Economic Perspectives, 2006, vol. 20, issue 4, pages 111-132

� The survey paper by Murray (2006) is an excellent survey paper on the instrumental variable

estimator, stressing intuition and implications rather than technicalities.

� He begins by discussing some studies using instruments to identify causal e¤ects. He then asks:

should instrumental variable be thought of as a panacea (a cure for all diseases)? He argues not.

Two reasons:

� Instruments may be invalid. This would result in inconsistent estimates and possibly greater

bias than for OLS. Indeed, since you can never be certain that your instruments are valid,

there�s a "dark cloud of invalidity" hanging overhead all instruments when they are arrive on

the scene.
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� Instruments may be so weakly correlated with the endogenous explanatory variables (referred

to as �troublesome�variables in the paper) that in practice it�s not possible to overcome the

bias of the OLS estimator. Weak instruments lead to bias, and misleading inference (common

result: standard errors far too low), in instrumental variable estimation.

5.1. Supporting an instrument�s validity

In order to chase away the dark cloud of instrument invalidity, you need to use economic arguments

combined with statistical analysis.

1. You need to advance theoretical arguments as to why your instruments are valid ones. A very

common view in the profession is that how much credence should be granted to IV studies depends

to a large extent on the quality of the arguments in support of the instruments�validity. You will

see a good example of this in the Miguel et al. paper (Lab 1).

2. Test for the validity of overidentifying restrictions. Of course, to have maximum faith in such a

test you need to know with certainty that an exactly identifying subset of the instruments are

valid. In practice, typically you don�t know. But if you�re using di¤erent instruments with di¤erent

rationales, so that one might be valid while the other is not, then your audience will have more

faith in the instruments if the OVERID test is passed. If your instruments are basically variants

on the same theme - e.g. all measures of institutional quality - then it seems more unlikely that

some can be valid whilst others are not. In any case, what you�re de�nitely not allowed to do is

say, because the OVERID restrictions look valid, that "the instruments are valid". You can never

be sure.

3. Be diligent about omitted variables. Omitted variables bias is a relevant concern in the context of

IV estimation - but in a somewhat di¤erent form, compared to OLS. In particular, IV estimation

is biased if an omitted relevant variable is correlated either with the included non-endogenous

explanatory variables (X) or the instrumental variables (Z). So there are good reasons for adding
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control variables, even if you�re estimating with instrumental variables. With panel data we may

want to control for �xed e¤ects, for example.

4. Use alternative instruments (rotate the instruments). This in the spirit of the OVERID test. If

you have many instruments, then try adding them one by one and check if your results are robust.

If parameter estimates vary a lot depending on which instruments are being used, this would be a

sign that not all your instruments are valid.

5.2. Coping with weak instruments

Estimation and inference with weak instruments - instruments only weakly correlated with the endogenous

variables - is an area of active research. Some of the theoretical arguments are rather technical, but the

main points are pretty straightforward. Let�s start by looking at some straightforward results.

Weak instruments imply high variance: We have seen that if the instruments and the endogenous

regressor(s) are only weakly correlated, the variance of the IV estimator can be rather high - recall that,

in the single-regressor single-instrument model:

Avâr
�
�̂
IV

1

�
= �̂2

1

N�2xz�
2
x

:

Weak instruments exacerbate the bias caused by invalid instruments: Another implication

of weak instruments is that the IV estimate may be quite badly inconsistent even as the sample size tends

to in�nity. To see this, recall that

p lim �̂
IV

1 = �1 + p lim
1
N

PN
i=1 (zi � �z)ui

1
N

PN
i=1 (zi � �z) (xi � �x)

;

p lim �̂
IV

1 = �1 +
cov (zi; ui)

cov (zi; xi)
;

p lim �̂
IV

1 = �1 +
corr (zi; ui)

corr (zi; xi)

�u
�x
:
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Clearly, the inconsistency in the IV estimator can be large if corr (zi; ui) 6= 0 and corr (zi; xi) is relatively

small.

� Student checkpoint : Show that the OLS estimator will have smaller asymptotic bias than the 2SLS

estimator whenever

corr (xi; ui) <
corr (xi; ui)

corr (zi; xi)
:

Clearly, if zi and xi are not correlated at all and corr (zi; ui) 6= 0, the asymptotic bias of the IV

estimator tends to in�nity. Thus it is important to establish whether zi and xi are correlated or not.

Weak instruments lead to small sample bias, even if corr (zi; ui) = 0 in the population:

� A much more subtle point than those raised above is that, even if corr (zi; ui) = 0 in the population

(so that the instrument is valid) it is now well understood that instrumental variable methods can

give very misleading results - biased parameter estimates, downward biased standard errors - in

small samples.

� Problems can become particularly serious if we have

�Weak instruments; and/or

�Many instruments (large number of overidentifying restrictions)

� You might think having a large sample solves these problems, but that is not necessarily the

case. Angrist and Krueger (1991) used more than 300,000 observations to estimate the returns

to education, but because they used a very large number of instruments, some of the inference

reported in that paper is not reliable, as shown by Bound, Jaeger and Baker (1996). So the issue

is not sample size, but how informative your data are.

[EXAMPLE on small sample & strong instruments vs. large sample & weak instruments - section 2

in the appendix.]
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� When instruments are only weakly correlated with the endogenous explanatory variable(s), two

serious problems emerge:

1. Biased parameter estimates: Even though 2SLS estimates are consistent (i.e. they almost certainly

approach the true value as N goes to in�nity), the estimates are always biased in �nite samples.

When the instruments are weak, this bias can be large - even in large samples.

2. Biased standard errors: When the instruments are weak, 2SLS standard errors tend to become too

small - i.e. you�d reject the null too often.

The combination of these problems is disturbing: the mid-point of your con�dence interval is in the

wrong place, and the width of the con�dence interval is too narrow.

[EXAMPLE. Results from a simulation based on a model with many instruments, all of which are

uninformative (irrelevant) - section 3 in the appendix].

� There is now quite a large literature on the implications of weak/many instruments for inference.

This literature is fairly technical. Practitioners need to be aware of the pitfalls however. ivreg2

produces several tests that shed light on whether weak instruments are likely to be a problem in

practice. Murray (2006) provides a useful discussion. The rest of this section draws heavily on his

exposition.

Biased parameter estimates. Here�s an argument that should make it immediately obvious to

you that 2SLS can be biased in �nite samples: suppose you have one endogenous regressor, and suppose

the number of instruments is equal to the number of observations. In this case the �rst stage regression

will result in R2 = 1, and the predicted value of the endogenous variable in the �rst stage will coincide

with the actual value. Your 2SLS estimator coincides exactly with the OLS estimator (the one you were

suspicious of in the �rst place).
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We can be a bit more precise. Consider the following simple model:

Y1i = �0 + �1Y2i + "i;

Y2i = �0 + Zi�1 + �i;

where V ar ("i) = V ar (�i) = 1 for convenience.

The explanatory variable Y2i is endogenous if corr ("; �) 6= 0. De�ne � = corr ("; �).

Hahn and Hausman (2005) show that, for this speci�cation, the �nite-sample bias of 2SLS for the

overidenti�ed model (l > 1), where l is the number of instruments in the Zi vector, can be written

E
h
�̂1;2SLS � �1

i
�
l�
�
1�R2

�
nR2

;

where R2 is the R-squared from the �rst stage, and n is the number of observations.3

� Key insight: The bias rises with three factors -

�The number of instruments used

�The correlation between the residuals (strength of endogeneity)

�Weakness of the instruments (weak instruments !low R2 in the �rst stage).

� Clearly these problems will be more severe in small samples.

� Recall that adding instruments might be thought a good idea on the grounds that standard errors

decrease. Now you see there is a cost associated with that, in terms of bias. Note in particular that

this cost will be high if the instruments are weak - why?

� Example: Suppose l = 15; � = 0:5; R2 = 0:20; n = 200, �1 = 1. In this case, we would have

E
h
�̂1;2SLS � �1

i
� 15� 0:5� 0:8

200� 0:2 = 0:15;

3To derive this formula you need to know a few matrix tricks. Let me know if you are interested.
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i.e. a bias of 15%.

� Student checkpoint: Can you derive the bias in the OLS estimator for this model? How do the 2SLS

and OLS estimators compare, in terms of bias? Can OLS ever be less biased? This is a fundamental

question - the whole point of using 2SLS is to reduce the bias produced by OLS.

� Student task (optional - but should be fun): Can you write a Stata program that computes the bias

above by means of simulations? Are the simulations results consistent with the analytical formula?

� I will now partly reveal the answer to the question set above: yes, if the instruments are too weak

and/or too many, then the 2SLS estimator may be more biased than the OLS estimator.

� Stock and Yogo (2005) provide a formal test for when an IV is "too weak" to be trustworthy. The

null hypothesis in this test is that bias of 2SLS is some fraction of the bias of OLS (e.g. less than

10%).

� In the simplest case where there�s just one endogenous explanatory variable, the key test statistic

is the F-statistic in the �rst stage (with non-standard critical values, however).

Biased standard-error estimates.

� The estimated variance of 2SLS is generally biased downward in �nite samples - and the bias can

become large when the instruments are weak. This means that you will tend to reject the null

hypothesis too often if you rely on the 2SLS standard errors.

� Stock and Yogo (2005) proposed a test of the null hypothesis that the true signi�cance of hypothesis

tests about the endogenous regressor�s coe¢ cient is smaller than 10% (and 15,20,25%) when the

usually stated signi�cance level is 5%. Such tests are reported by ivreg2. Clearly, if your test

statistic is lower than, say, 25% maximal IV size, then your standard errors are very unreliable

(strongly downward biased).
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Instrumental Variable Estimation in Stata 
 
I will use the Stata command ivreg2, which has been developed by Stata users (not Stata Corp.). 
If this command is not already on your computer, you should be able to install it by typing  
 
ssc install ivreg2 
 
in the Stata command window. 
 
In version 10 of Stata, the command ivregress is available, which is similar to ivreg2 (though not 
quite as comprehensive). Older versions of Stata have the command ivreg, which is a little bit too 
limited for our purposes.  
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1.  Illustration using the CARD.RAW data  
 
Using wage data for 1976, Card (1995) uses a dummy variable indicating whether a man grew up 
in the vicinity of a four-year college as an IV for years of schooling.1 The data can be 
downloaded from the web (the file name is CARD.RAW). These data are used by Wooldridge 
(2003; Econometric Analysis of Cross Section and Panel Data). 
 
. use CARD.dta, clear 
 
 
Table 1.1 OLS 
 
      Source |       SS       df       MS              Number of obs =    2220 
-------------+------------------------------           F( 15,  2204) =   54.96 
       Model |  116.783056    15  7.78553706           Prob > F      =  0.0000 
    Residual |  312.216429  2204  .141658997           R-squared     =  0.2722 
-------------+------------------------------           Adj R-squared =  0.2673 
       Total |  428.999484  2219  .193330097           Root MSE      =  .37638 
 
------------------------------------------------------------------------------ 
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   .0770086   .0040714    18.91   0.000     .0690243    .0849928 
       exper |   .0898502   .0079036    11.37   0.000     .0743509    .1053495 
     expersq |  -.0024481   .0003967    -6.17   0.000    -.0032261   -.0016702 
       black |  -.1761354   .0239043    -7.37   0.000    -.2230128   -.1292581 
       south |   -.125071   .0312269    -4.01   0.000    -.1863083   -.0638338 
        smsa |   .1376717   .0235462     5.85   0.000     .0914967    .1838468 
      reg661 |  -.0865621   .0457195    -1.89   0.058    -.1762199    .0030956 
      reg662 |  -.0020709   .0318752    -0.06   0.948    -.0645795    .0604378 
      reg663 |   .0314867    .031107     1.01   0.312    -.0295154    .0924888 
      reg664 |  -.0503983    .040855    -1.23   0.217    -.1305165      .02972 
      reg665 |   .0036234   .0422329     0.09   0.932     -.079197    .0864438 
      reg666 |   .0182858   .0488216     0.37   0.708    -.0774553    .1140269 
      reg667 |   .0048968   .0459144     0.11   0.915    -.0851432    .0949367 
      reg668 |  -.1557652   .0520945    -2.99   0.003    -.2579245   -.0536058 
      smsa66 |   .0279434   .0227061     1.23   0.219    -.0165842     .072471 
       _cons |   4.656564   .0833419    55.87   0.000     4.493128    4.820001 
------------------------------------------------------------------------------ 
 
 
  

                                                 
1 Card. D. (1995). ”Using geographic variation in college proximity to estimate the return to schooling,” in 
Aspects of Labour Market Bevhavior: Essays in Honour of John Vanderkamp, ed. L.N. Christophides, E. 
K. Grant, and R. Swidinsky. Toronto: University of Toronto Press, 201-222. 
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Table 1.2: Reduced form education for education 
 
 
      Source |       SS       df       MS              Number of obs =    2220 
-------------+------------------------------           F( 18,  2201) =  115.63 
       Model |  7221.94718    18  401.219288           Prob > F      =  0.0000 
    Residual |  7636.97669  2201  3.46977587           R-squared     =  0.4860 
-------------+------------------------------           Adj R-squared =  0.4818 
       Total |  14858.9239  2219  6.69622527           Root MSE      =  1.8627 
 
------------------------------------------------------------------------------ 
        educ |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      nearc2 |   .0180446    .087154     0.21   0.836     -.152868    .1889573 
      nearc4 |   .2604735   .0983896     2.65   0.008     .0675272    .4534197 
    motheduc |   .1324826   .0170677     7.76   0.000     .0990122    .1659531 
    fatheduc |   .1111796   .0145968     7.62   0.000     .0825547    .1398045 
       exper |  -.3805367   .0382972    -9.94   0.000    -.4556392   -.3054343 
     expersq |   .0025954   .0019641     1.32   0.187    -.0012563     .006447 
       black |  -.3459218   .1219798    -2.84   0.005    -.5851293   -.1067143 
       south |  -.0518041   .1548235    -0.33   0.738    -.3554196    .2518113 
        smsa |   .4218089   .1167867     3.61   0.000     .1927854    .6508325 
      reg661 |  -.3795599   .2283522    -1.66   0.097    -.8273683    .0682485 
      reg662 |  -.3169284   .1583069    -2.00   0.045    -.6273748    -.006482 
      reg663 |  -.3542991   .1570864    -2.26   0.024    -.6623522    -.046246 
      reg664 |  -.0814964   .2059201    -0.40   0.692    -.4853145    .3223218 
      reg665 |  -.2797824   .2111526    -1.33   0.185    -.6938616    .1342969 
      reg666 |  -.4014203   .2431572    -1.65   0.099    -.8782619    .0754213 
      reg667 |  -.2318261   .2296505    -1.01   0.313    -.6821804    .2185282 
      reg668 |   .0818341   .2624031     0.31   0.755    -.4327495    .5964177 
      smsa66 |  -.2201582   .1174246    -1.87   0.061    -.4504328    .0101165 
       _cons |   14.02289   .2995127    46.82   0.000     13.43554    14.61025 
------------------------------------------------------------------------------ 
 
. test nearc2 nearc4 motheduc fatheduc ; 
 
 ( 1)  nearc2 = 0 
 ( 2)  nearc4 = 0 
 ( 3)  motheduc = 0 
 ( 4)  fatheduc = 0 
 
       F(  4,  2201) =   65.48 
            Prob > F =    0.0000 
 
. predict res, res; 
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Table 1.3 Regression based Hausman test for endogeneity 
 
      Source |       SS       df       MS              Number of obs =    2220 
-------------+------------------------------           F( 16,  2203) =   51.88 
       Model |  117.405539    16   7.3378462           Prob > F      =  0.0000 
    Residual |  311.593945  2203  .141440738           R-squared     =  0.2737 
-------------+------------------------------           Adj R-squared =  0.2684 
       Total |  428.999484  2219  .193330097           Root MSE      =  .37609 
 
------------------------------------------------------------------------------ 
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   .1017497   .0124755     8.16   0.000     .0772848    .1262147 
       exper |   .1004833   .0093841    10.71   0.000     .0820808    .1188859 
     expersq |   -.002493    .000397    -6.28   0.000    -.0032715   -.0017146 
       black |  -.1549702   .0259292    -5.98   0.000    -.2058184    -.104122 
       south |  -.1226742   .0312237    -3.93   0.000    -.1839053   -.0614432 
        smsa |   .1244044   .0243632     5.11   0.000     .0766271    .1721816 
      reg661 |   -.080592   .0457728    -1.76   0.078    -.1703544    .0091703 
      reg662 |   .0056286   .0320614     0.18   0.861    -.0572452    .0685025 
      reg663 |   .0411136   .0314199     1.31   0.191    -.0205022    .1027294 
      reg664 |  -.0486601   .0408319    -1.19   0.233    -.1287332    .0314129 
      reg665 |    .013062   .0424395     0.31   0.758    -.0701636    .0962876 
      reg666 |   .0314252   .0491844     0.64   0.523    -.0650274    .1278778 
      reg667 |   .0172291   .0462541     0.37   0.710     -.073477    .1079353 
      reg668 |  -.1598693   .0520911    -3.07   0.002     -.262022   -.0577166 
      smsa66 |   .0276992   .0226889     1.22   0.222    -.0167947    .0721931 
         res |  -.0276853   .0131969    -2.10   0.036    -.0535649   -.0018056 
       _cons |   4.232819   .2184829    19.37   0.000     3.804366    4.661273 
------------------------------------------------------------------------------ 
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Table 1.4: 2SLS estimates  
 
. ivreg2 lwage  (educ= nearc2 nearc4 motheduc fatheduc) exper expersq black 
south smsa reg661 reg662 reg663 reg664 reg665 reg666 reg667 reg668 smsa66, 
endog(educ); 
 
IV (2SLS) estimation 
-------------------- 
 
Estimates efficient for homoskedasticity only 
Statistics consistent for homoskedasticity only 
 
                                                      Number of obs =     2220 
                                                      F( 15,  2204) =    34.95 
                                                      Prob > F      =   0.0000 
Total (centered) SS     =  428.9994844                Centered R2   =   0.2600 
Total (uncentered) SS   =  88133.52155                Uncentered R2 =   0.9964 
Residual SS             =  317.4474881                Root MSE      =    .3781 
 
------------------------------------------------------------------------------ 
       lwage |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   .1017497   .0125438     8.11   0.000     .0771643    .1263351 
       exper |   .1004833   .0094355    10.65   0.000     .0819901    .1189765 
     expersq |   -.002493   .0003991    -6.25   0.000    -.0032754   -.0017107 
       black |  -.1549702   .0260712    -5.94   0.000    -.2060688   -.1038715 
       south |  -.1226742   .0313948    -3.91   0.000    -.1842068   -.0611416 
        smsa |   .1244044   .0244966     5.08   0.000     .0763919    .1724169 
      reg661 |   -.080592   .0460235    -1.75   0.080    -.1707964    .0096124 
      reg662 |   .0056286    .032237     0.17   0.861    -.0575548    .0688121 
      reg663 |   .0411136    .031592     1.30   0.193    -.0208056    .1030328 
      reg664 |  -.0486601   .0410555    -1.19   0.236    -.1291275    .0318072 
      reg665 |    .013062   .0426719     0.31   0.760    -.0705735    .0966975 
      reg666 |   .0314252   .0494538     0.64   0.525    -.0655024    .1283528 
      reg667 |   .0172291   .0465074     0.37   0.711    -.0739237     .108382 
      reg668 |  -.1598693   .0523764    -3.05   0.002    -.2625251   -.0572135 
      smsa66 |   .0276992   .0228132     1.21   0.225    -.0170138    .0724122 
       _cons |    4.23282   .2196795    19.27   0.000     3.802256    4.663383 
------------------------------------------------------------------------------ 
Underidentification test (Anderson canon. corr. LM statistic):         236.081 
                                                   Chi-sq(4) P-val =    0.0000 
------------------------------------------------------------------------------ 
Weak identification test (Cragg-Donald Wald F statistic):               65.478 
Stock-Yogo weak ID test critical values:  5% maximal IV relative bias    16.85 
                                         10% maximal IV relative bias    10.27 
                                         20% maximal IV relative bias     6.71 
                                         30% maximal IV relative bias     5.34 
                                         10% maximal IV size             24.58 
                                         15% maximal IV size             13.96 
                                         20% maximal IV size             10.26 
                                         25% maximal IV size              8.31 
Source: Stock-Yogo (2005).  Reproduced by permission. 
------------------------------------------------------------------------------ 
Sargan statistic (overidentification test of all instruments):           6.556 
                                                   Chi-sq(3) P-val =    0.0875 
-endog- option: 
Endogeneity test of endogenous regressors:                               4.426 
                                                   Chi-sq(1) P-val =    0.0354 
Regressors tested:    educ 
------------------------------------------------------------------------------ 
Instrumented:         educ 
Included instruments: exper expersq black south smsa reg661 reg662 reg663 
reg664 
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                      reg665 reg666 reg667 reg668 smsa66 
Excluded instruments: nearc2 nearc4 motheduc fatheduc 
------------------------------------------------------------------------------ 
 
. ivendog; 
 
Tests of endogeneity of: educ 
H0: Regressor is exogenous 
    Wu-Hausman F test:                  4.40102  F(1,2203)   P-value = 0.03603 
    Durbin-Wu-Hausman chi-sq test:      4.42614  Chi-sq(1)   P-value = 0.03539 
 
 
 
 
Table 1.5: 2SLS estimates excluding parents' education (dubious IVs) 
 
. ivreg2 lwage  (educ= nearc2 nearc4 ) exper expersq black south smsa reg661 
reg662 reg663 reg664 reg665  
> reg666 reg667 reg668 smsa66, endog(educ); 
 
IV (2SLS) estimation 
-------------------- 
 
Estimates efficient for homoskedasticity only 
Statistics consistent for homoskedasticity only 
 
                                                      Number of obs =     2220 
                                                      F( 15,  2204) =    27.70 
                                                      Prob > F      =   0.0000 
Total (centered) SS     =  428.9994844                Centered R2   =   0.1739 
Total (uncentered) SS   =  88133.52155                Uncentered R2 =   0.9960 
Residual SS             =  354.3903925                Root MSE      =    .3995 
 
------------------------------------------------------------------------------ 
       lwage |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   .1472587   .0702897     2.10   0.036     .0094935    .2850239 
       exper |    .120042   .0312972     3.84   0.000     .0587006    .1813834 
     expersq |  -.0025757     .00044    -5.85   0.000     -.003438   -.0017134 
       black |  -.1160388   .0651608    -1.78   0.075    -.2437517    .0116741 
       south |  -.1182655   .0338386    -3.49   0.000     -.184588   -.0519431 
        smsa |   .1000003   .0451679     2.21   0.027     .0114729    .1885278 
      reg661 |  -.0696106   .0514015    -1.35   0.176    -.1703557    .0311345 
      reg662 |   .0197911   .0402696     0.49   0.623    -.0591358    .0987181 
      reg663 |   .0588214   .0428444     1.37   0.170     -.025152    .1427949 
      reg664 |   -.045463   .0436489    -1.04   0.298    -.1310134    .0400873 
      reg665 |   .0304235   .0522139     0.58   0.560    -.0719139    .1327609 
      reg666 |   .0555939   .0638295     0.87   0.384    -.0695097    .1806974 
      reg667 |   .0399133   .0599879     0.67   0.506    -.0776608    .1574875 
      reg668 |  -.1674185   .0565124    -2.96   0.003    -.2781807   -.0566562 
      smsa66 |   .0272501   .0241137     1.13   0.258    -.0200119    .0745121 
       _cons |   3.453381   1.204836     2.87   0.004     1.091946    5.814816 
------------------------------------------------------------------------------ 
Underidentification test (Anderson canon. corr. LM statistic):           8.394 
                                                   Chi-sq(2) P-val =    0.0150 
------------------------------------------------------------------------------ 
Weak identification test (Cragg-Donald Wald F statistic):                4.180 
Stock-Yogo weak ID test critical values: 10% maximal IV size             19.93 
                                         15% maximal IV size             11.59 
                                         20% maximal IV size              8.75 
                                         25% maximal IV size              7.25 
Source: Stock-Yogo (2005).  Reproduced by permission. 
------------------------------------------------------------------------------ 
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Sargan statistic (overidentification test of all instruments):           3.495 
                                                   Chi-sq(1) P-val =    0.0615 
-endog- option: 
Endogeneity test of endogenous regressors:                               1.138 
                                                   Chi-sq(1) P-val =    0.2861 
Regressors tested:    educ 
------------------------------------------------------------------------------ 
Instrumented:         educ 
Included instruments: exper expersq black south smsa reg661 reg662 reg663 
reg664 
                      reg665 reg666 reg667 reg668 smsa66 
Excluded instruments: nearc2 nearc4 
------------------------------------------------------------------------------ 



1. Small sample & strong IVs vs. large sample & weak IVs 

 

Model: 

x = alpha*z + v2 

y = beta*x + u1 

No endogeneity. How well does the IV estimator do? Results from 200 simulations based on artificial 
data based on alpha=beta=1. 

Case 1: Small sample (N=50), strong instrument (t-stat 1st stage = 6.0) 

    Variable       |       Obs        Mean    Std. Dev.       Min        Max 

-------------------+-------------------------------------------------------- 

      E(alpha_ols) |       200    1.004607     .161436   .5434976   1.466404 

      E(beta_ols)  |       200    .9712768    .1705391   .5916569   1.518729 

      E(beta_iv)   |       200    .9688918    .2606616   .2876143   1.824383 

 

Case 2: Large sample (N=2000), weak instrument (t-stat 1st stage = 2.0) 

. sum store1 store2 store3 

N=2000 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

   E(alpha_ols)|       200    1.019581    .5327355  -.4075418   2.487735 

  E(beta_ols)  |       200     .977441    .1674216   .5277573    1.43578 

  E(beta_iv)   |       200   -.5020311    12.56567  -136.0609   23.53888 
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2. Too many instruments  

True model: 

ge e2=std_v2*invnorm(uniform()) 
ge e1=std_e1*invnorm(uniform()) 
 
ge u1=e1+e2 
 
ge x = 1*z + e2 
ge y = 0*x + u1 
 

where z, which is a valid and informative instrument, is drawn from std normal 
distribution.  

True coefficient, denoted beta, on x is zero, but OLS is biased since x is 
correlated with u1. The plim of the OLS estimator is 0.5 here. 

Now consider using as instruments for x 50 random variables w1,w2,…,w50 that are 
totally uncorrelated with x in theory. We do not use z (assume not available).  

Question: how does the 2SLS estimator perform? 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

      E(beta_ols)      |       200    .4927751    .0171272   .4467664   .5439443 

      E(beta_2sls)     |       200     .413747    .1071855   .1153944   .7246853 

      E(std error 2sls)|       200    .1144694    .0110274   .0935858   .1683483 

      E(beta_LIML)     |       200     .035033    2.161731  -10.14505   12.20792 

      E(std error LIML)|       200    1.731708    6.296244   .1315755   47.98719 

 

=> 2SLS IS CLEARLY BIASED TOWARDS OLS! The Limited Information Maximum Likelihood 
(LIML) estimator appears much more robust in this context. 

 

3. Same model as in (2) but with using only 5 instruments 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

      E(beta_ols)      |       200    .4927751    .0171272   .4467664   .5439443 

      E(beta_2sls)     |       200    .3097683    .4376534  -1.724144   1.178116 

      E(std error 2sls)|       200     .471942    .3071753   .2225561    3.96013 

      E(beta_LIML)     |       200    .2219852    11.76237  -120.5036   88.33043 

      E(std error LIML)|       200    70.10669    564.0644   .2356987   6711.553 

The Stata program generating these results can be found below. 
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/*  
 
Illustration: Too many instruments 
 
*/ 
 
 
clear 
local N=2000 
local seedn=457387+`N' 
set seed `seedn' 
 
set matsize 1600 
 
set obs `N' 
set more off 
 
ge z=invnorm(uniform()) 
scalar std_v2 = 1 
scalar std_e1 = 1 
 
 
forvalues i = 1(1)50 { 
generate w`i' = uniform() 
} 
 
 
local k=1 
 
mat store=J(200,5,0) 
 
qui{ 
while `k'<=200{ 
 
ge e2=std_v2*invnorm(uniform()) 
ge e1=std_e1*invnorm(uniform()) 
 
ge u1=e1+e2 
 
ge x = 1*z + e2 
 
ge y = 0*x + u1 
 
if `k'==1 { 
noi reg y x 
mat store[`k',1]=_b[x]  /* ols coefficient */ 
noi ivreg2 y (x=w1-w50 ) 
mat store[`k',2]=_b[x]  /* iv coefficient */ 
mat V=e(V) 
mat store[`k',3]=sqrt(V[1,1])  /* iv std error*/ 
 
noi ivreg2 y (x=w1-w50 ), liml 
mat store[`k',4]=_b[x]  /* liml coefficient */ 
mat V=e(V) 
mat store[`k',5]=sqrt(V[1,1])  /* liml std error*/ 
 
} 
 
if `k'>1 { 
reg y x 
mat store[`k',1]=_b[x]  /* ols coefficient */ 



ivreg2 y (x=w1-w50) 
mat store[`k',2]=_b[x]  /* iv coefficient */ 
mat V=e(V) 
mat store[`k',3]=sqrt(V[1,1])  /* iv std error*/ 
ivreg2 y (x=w1-w50), liml 
mat store[`k',4]=_b[x]  /* liml coefficient */ 
mat V=e(V) 
mat store[`k',5]=sqrt(V[1,1])  /* liml std error*/ 
 
} 
 
disp `k' 
drop e1 e2 x y u1 
 
local k=`k'+1 
} 
} 
svmat store 
/* note: 
mean(store1) = E(b_ols) 
mean(store2) = E(b_2sls) 
mean(store3) = se(b_2sls) 
mean(store4) = E(b_liml) 
mean(store5) = se(b_liml) 
*/ 
 
sum store1 store2 store3 store4 store5 
 
 
 




