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1. Introduction

In this lecture I will discuss different methods for computing standard errors.

I will focus on practical issues that we need to keep in mind when doing applied research. I will
highlight the fact that robust standard errors, despite their popularity, are biased and can be quite
misleading in small samples. I will also discuss ’clustered’ standard errors.

The lecture is based on Angrist & Pischke, Chapter 8. As you can see if you read this chapter, the
material gets quite technical at times - especially when the authors set out to derive the bias of robust
standard errors analytically in Section 8.1. Read the technical details if you are interested! A good
understanding of the theoretical mechanisms will probably help you grasp the general issues.

However, my view is that you can appreciate the problems relevant for applied economists without

penetrating all the maths. I will adopt this principle in this lecture and skip most of the technical details.

2. The Bias of Robust Standard Error Estimates

2.1. Background

In the old days (early 1990s, and earlier), it was very common for empirical researchers to based inference
on conventional standard errors, e.g. those obtained from the conventional variance formula o2 (X' X) ™"

As you know, the conventional formula for standard errors will not be appropriate under heteroskedas-
ticity; it will also be inappropriate if observations are not independent. For these and other related
reasons, alternative ways of computing standard errors, that are supposedly 'robust’ to such problems,
have become more popular.

Today, I would say it is standard to show robust standard errors in applied work.

However, robust standard errors are not free from problems and it’s important to understand how
these methods work and especially the situations in which they won’t work well.

I will now try to shed some light on this particular issue.



2.2. Important equations

Recall the definition of the OLS estimator:
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or, in matrix notation,
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B=[X'X]"" X"y,

where X is the N x K matrix with rows X/; K is the number of regressors; and y is the N x 1 vector of
Y;’s.

The vector 3 has an asymptotic normal distribution (see Section 3.1.1):
VN (B-8) ~ N (0,9),
where (2 is the asymptotic covariance matrix, and  is defined in terms of population moments as
B=E[X;X]]" E[X;Y;].
Define the robust asymptotic covariance matrix as
Q, = E[X,X]]"" B (X X[e}) E[X. X[ (2.1)

Recall that, if residuals are homoskedastic (constant variance), we have E (ef) = 02, and we obtain the
conventional variance matrix

Q. =?E[X; X", (2.2)

Note that (2.1) and (2.2) are defined in terms of population moments. As usual, when we are working



with a finite sample, we compute the variance by replacing population moments by sample moments:
A _ X;X!e? -1
O, =N[x'x]" ST ) XX 2.3
o)™ (R e (2.3

Q. =[x'x] e = x'x) ! <Z j\i) : (2.4)

where ¢; = Y; — XiB is the estimated regression residual.

Asymptotically, N Q. converges in probability to €, and N Q, converges to .. However, in finite
samples, the variance estimators (2.3) and (2.4) will be biased.

Moreover, if the residuals are homoskedastic, the robust estimator is more biased than the conven-
tional estimator!

Hence, robust standard errors can be more misleading than conventional standard errors.

To illustrate this, consider the results from a Monte Carlo experiment, shown in Table 8.1.1 in AP
(page 304).

Summary of the experiment:
e The model is
Yi =By + 51Di + ¢,
where D; is a dummy variable.

e The true value of the parameter on D; is zero: 8; = 0. Key question: Will we get the inference

right if we use variance estimators (2.3) and (2.4)?

The sample size is very small: N = 30.

The sample mean of D; is equal to 0.10.

Residuals are drawn from the distributions

N (0,0%) if D;=0

g~

N(0,1) if D; =1



and there are three designs: A, 02 = 0.5 (lots of heteroskedasticity); B, o2 = 0.85 (little het-

eroskedasticity); C, o2 = 1 (no heteroskedasticity).

e The results in Table 8.1.1 were generated using 25,000 replications.

[Table 8.1.1 here]
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3. Clustering and Serial Correlation in Panels

Using clustered standard errors can radically change your inference. Until maybe 15 years ago, you would
rarely see clustered standard errors in applied work. That has all changed now - partly, I guess, because
computing them has become straightforward, and partly because microeconometricians have realized the
importance of the issue.

To illustrate, suppose we’re interested in the bivariate regression

Y;g = 50 +61xg +6ig7

where Yj, is the dependent variable for individual 7 in cluster g. Note the absence of an i-subscript on
the z-variable. This is not a typo. Instead, this notation implies that the explanatory variable only
varies across clusters (e.g. towns, schools, etc.); there is no variation within clusters. For example, i
might denote student and g class, and Y;, might be student performance and z, class size; if there are
on average 25 students per class, there will be 25 x G observations in your sample.

Equipped with 25 x G observations you are likely to have a large sample. This should result in low
standard errors and high t-values, right? Well, maybe not.

One obvious suspicion is that the performance of students within the same class will be correlated

(perhaps because they share the same teacher):

Eleigejq) = Peag >0, (3.1)

where p, is the intraclass correlation of the residual and o2 is the residual variance.
Note the similarity of (3.1) to the expression for the serial correlation in the POLS residual for a panel

data model in which there is unobserved heterogeneity
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(see eq. 3.7 in the panel data lecture).

Indeed, correlation within groups is often modelled using an additive random effects model, where
€ig = Vg + Nig»

where v, is a random component specific to class g and 7, is student specific, assumed uncorrelated
across students.

In this setting, failing to acknowledge the group structure in the data can lead to radically downward
biased standard errors. Intuitively, the mistake we’re making if ignoring the group structure is to assume
the residuals are uncorrelated across all observations; while we are prepared to believe residuals are
uncorrelated across clusters, we do not want to impose zero correlation within clusters.

In the special case where regressors are nonstochastic and the clusters are of equal size n, one can
show that

L1 (m—-1)p,,

where V (B 1) is the correct sampling variance and V, () denotes the estimate based on the conventional
variance formula (2.4). So you see, using the conventional formula gets more and more problematic as
the intraclass correlation and the cluster size increase. The square root of the V/ (B1> /Ve (8,) formula is
known as the Moulton factor.

So what’s an applied economist to do? One solution is to estimate the regression based on group
averages instead of microdata (e.g. treat each class as a datapoint, rather than each observation). This
is a fairly unusual approach. By far the most common approach is to use the clustered covariance

matrix:

Q= (X'X)" (Z X;\i/ng> (xX'x)"",



where
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and a is a degrees of freedom adjustment factor. Note that, if there is no intracluster correlation, the
off-diagonal elements will be small, and so the clustered standard errors should be similar to robust
standard errors.

This sounds good. However, the formula for clustered standard errors will suffer from similar finite
sample bias as that discussed earlier for the robust estimator. What matters in this context is the number
of clusters - not the sample size. That is, clustered standard errors may be very misleading if the number
of clusters is small (see section 8.2.3 in AP).

For very similar reasons to those just discussed, we will probably want to use clustered standard errors

when estimating panel data models - see Section 8.2.2 in AP for a nice discussion.



