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1. Introduction & Organization

� The overall aim of this course is to improve

� your understanding of empirical research in economics; and

� your ability to apply econometric methods in your own research

� Good empirical economics: Ask an interesting research question, and �nd an empirical approach -

an identi�cation strategy - that enables you to answer the question.

� Mastering statistical techniques - e.g. OLS, 2SLS, Maximum Likelihood,.... - is only one of your

tasks. Being able to program your own likelihood function in Stata is impressive, but doesn�t

guarantee you will be regarded as an outstanding empirical economist.

� Techniques are essentially tools - and if what you are �building�is not important or interesting, it

doesn�t matter how rigorous your methods are.

� I would argue that the opposite applies too: You may have an important idea, but if your quanti-

tative analysis is poor quality the research project is unlikely to be a success.

� The �rst part of the course - lectures 1-10 - is oriented towards the analysis of cross-section and

panel data. The second part of the course - lectures 11-15 - covers time series econometrics.

1.1. Mechanics & Examination

� To get the course credits, �ve computer exercises have to be completed, plus you need to pass an

oral exam.

�Computer exercises: Feel free to work collaborate with fellow students on these (a group size

of 2 or 3 students would be best). Short reports on the computer exercises - one per group

& exercise - should be emailed to the person in charge of the exercise one week after each

computer session, at the latest. We will follow up on these in class.
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�Oral exam: Details to follow, but basically each student gets assigned a 30-minute slot. During

the viva, the student meets with the examiner(s) and will be requested to answer a small

number of questions on the course material orally.

�Grades (Fail, Pass or High Pass) will be based on the performance in the viva and in the

computer exercises.

� The course web page will be updated continuously, especially with regards to relevant articles and

research papers. So you should check for updates every now and then.

1.2. Two textbooks - Two points of view

� Angrist and Pischke (2009). Mostly Harmless Econometrics. Jazzy exposition, re�ects the �new�

way of thinking about econometrics, based on the experimentalist paradigm and potential outcomes.

Cuts corners sometimes and engages in slightly too much self-promotion for my taste (papers by

Angrist and Krueger are cited very favorably throughout). We will use this book a lot. From now

on, I�ll refer to this simply as AP.

� Greene, W (2008). Econometric Analysis, 6th edition. Comprehensive. Strong on mathematical

details. A bit mechanical. Not particularly good at explaining results intuitively. We will use

selected chapters in this book when discussing discrete choice models, panel data, multinomial &

ordered outcomes, and sample selection bias.

1.3. Recommended reading for this lecture

AP, Chapters 1-2, 3.1, 3.4.1, 3.4.3 (optional).

2. Questions about Questions

Reference: AP, Chapter 1.

This chapter emphasizes that there is more to empirical economics than just statistical techniques.

The authors argue that a research agenda revolves around four questions:
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� What is your causal relationship of interest?

� What would your ideal experiment look like - i.e. one that would enable you to capture the

causal e¤ect of interest?

� What is your identi�cation strategy?

� What is your mode of statistical inference?

This really is fundamental. You could do worse than taking these four bullet points as a starting point

for the introduction of the paper you are currently writing (OK, you may want to add some context &

motivation after the �rst question). Let�s discuss them brie�y.

2.1. Your causal relationship of interest

Causal relationship: tells you what will happen to some quantity of interest (e.g. expected earnings) when

an explanatory variable (e.g. years of schooling) changes, holding other variables �xed. The counterfactual

outcome is central here - the outcome that would result from pursuing a di¤erent educational policy, for

example.

2.2. Your ideal experiment

In this course we will talk a lot about the problems posed by (traditional econometrics jargon) endogeneity

bias or (new econometrics jargon) selection bias. In general, if your goal is to estimate the causal e¤ect of

changing variableX on your outcome variable of interest, then the best approach is random assignment.

In many cases this is too costly or totally impractical, and so we have no choice but to look for answers

using observational (non-experimental) data. Even so, thinking hard about the �ideal�experiment may

be very useful when getting started on a research project (e.g. when you�re designing a survey instrument

or the survey design), and it may help you interpret the regressions you�ve run based on observational

data.

It�s also a useful checkpoint: If even in an �ideal�world you can�t design the experiment you need to
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answer your question of interest, then chances are you won�t be able to make much progress in the real

world.

In short, forcing yourself to think about the mechanics of an ideal experiment highlights the forces

you�d like to change, and the factors you�d like to hold constant - and you need to be clear on this to be

able to say something about causality.

2.3. Your identi�cation strategy

Recognizing that the ideal experiment is likely not practical, you have to make do with the data you�ve

got (or can get) The term identi�cation strategy is often used these days as a way of summarizing the

manner in which you use observational data to approximate a real experiment. A classic example is the

Angrist-Krueger (1991) QJE paper in which the authors use the interaction of compulsory attendance

laws in US states and students�season of birth as a natural experiment to estimate the causal e¤ects of

�nishing high school on wages.

In general, if you don�t have data generated from a clean, laboratory type experiment, then using data

from a natural experiment is second best (you will then likely spend most of your time at seminars arguing

about whether your data really can be interpreted as having been generated by a natural experiment).

2.4. Your mode of statistical inference

� You need to be clear on the population you�re studying (that�s what your results are supposed to

refer to)

� You need to make sure your sample is an appropriate basis for making inference about the popula-

tion.

� You need to make sure the procedure for calculating standard errors is appropriate.

If you�re clear on your mode of statistical inference, then you will be able to make accurate statements

about what we can learn from your data analysis about mechanisms of interest in the population.
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If you�re clear on all these four questions (referred to as FAQ by Angrist and Pischke), you�ve made

a good start on your project.

3. The Experimental Ideal

Reference: AP, Chapter 2.

3.1. The Selection Problem

Suppose our question of interest is as follows:

Do hospitals make people healthier?

Note that this is a question about causality. How shall we go about answering our research question?

Well one very credible approach would be random assignment, right? That is, draw say 1,000 individ-

uals randomly from the population and assign half of them to hospital treatment and keep the other half

out of hospitals (regardless of their health); and then measure everyone�s health status after a suitable

period of time. Great idea in theory - but totally useless in practice, of course.

Suppose we set out to answer our research question using observational (non-experimental) data.

Survey data on hospital visits and health status reported by AP are summarized in the following table:

Group Sample size Mean health status Std error

Hospital 7,774 3.21 .014

No hospital 90,049 3.93 .003

where health status is measured on a 1-5 scale (1=poor; 5=excellent). Clearly the average health status

appears to be worse among the hospitalized (the t-value associated with H0: health is invariant to hospital

status is 58.9).

If our research question had been as follows: "Are hospitalized people healthier than nonhospitalized

people?" then we would have been done by now. But this is not our question. And we cannot infer from
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the data above that hospitals make people less healthy, because... well because people who (choose to)

go to hospital are probably less healthy to begin with.

This may strike you as a totally trivial and silly example. Indeed. And precisely because it�s so

obvious what the nature of the problem is, this is a nice setting in which we can explore the concept of

selection bias.

We take our starting point the potential outcomes framework:

Potential outcome =

8>><>>:
Y1i = health outcome for i if hospitalized

Y0i = health outcome for i if not hospitalized

9>>=>>;
For each individual (or �rm, country,...; from now on, individual) there is thus a potential outcome (Y1i)

under treatment, and another potential outcome (Y0i) without treatment. Think of Y1i and Y0i as

outcomes in alternative states of the world. In general, we expect there to be a distribution of Y1i and

Y0i in the population.

The observed outcome Yi can be written in terms of potential outcomes as

Yi =

8>><>>:
Y1i if Di = 1

Y0i if Di = 0

9>>=>>;
= Y0i + (Y1i � Y0i)Di;

where Di is a dummy variable equal to 1 if individual i received treatment, and 0 otherwise.

The treatment e¤ect - in our example, the causal e¤ect of hospitalization - is simply the di¤er-

ence between the two potential outcomes: Y1i � Yi0.. Note that the treatment e¤ect is taken to be

heterogeneous across individuals (re�ected by the i subscripts).

Unfortunately, it is impossible to measure treatment e¤ects at the individual level, as we can never

observe the full set of potential outcomes in alternative states of the world - basically, because we don�t

have access to parallel universes. Researchers therefore focus on various forms of average treatment

e¤ects.
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We suspect we won�t be able to learn about the causal e¤ect of hospitalization simply by comparing

the average levels of health by hospitalization status. We can now formalize the problem somewhat. We

begin by noting that

E [YijDi = 1]� E [YijDi = 0] = E [Y1ijDi = 1]� E [Y0ijDi = 0] ;

which shows that the di¤erence in means is the di¤erence in the average potential outcome under treat-

ment for treated people minus the average potential outcome under non treatment for non-treated

people. We can decompose this further (subtract and add E [Y0ijDi = 1]):

E [YijDi = 1]� E [YijDi = 0] =

E [Y1ijDi = 1]� E [Y0ijDi = 1] (ATT)

+E [Y0ijDi = 1]� E [Y0ijDi = 0] (Selection bias),

where ATT = Average treatment e¤ect on the treated is the average causal e¤ect for the sub-group of

treated individuals.

Now, ATT is an interesting quantity: it captures the di¤erence between the averages in:

� the health of the hospitalized

� what would have been the health of the hospitalized had they not been hospitalized.

Note that the latter is the counterfactual, i.e. the outcome that didn�t happen.

But as you can see, we can�t infer the ATT from the di¤erence in means, because the di¤erence in

observed means is the sum of the ATT and a selection bias term.

The selection bias is simply the di¤erence in average health under non-treatment between those who

were hospitalized and those who were not.

It seems reasonable to expect E [Y0ijDi = 1] < E [Y0ijDi = 0] (why?), hence the selection bias is

negative.
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This would imply that the di¤erence in observed means is a downward biased estimator of the ATT.

And this, of course, is consistent with the numbers (worse health for the hospitalized).

3.2. Random Assignment Solves the Selection Problem

The basic problem that we encountered above was that actual treatment status Di is not independent of

potential outcomes (e.g. Y0 likely lower for hospitalized than for non-hospitalized people). Now suppose

that we could randomly assign treatment to individuals in the population. Because in this case Di is

independent of potential outcomes, the selection bias disappears. Recall, in general:

E [YijDi = 1]� E [YijDi = 0] =

E [Y1ijDi = 1]� E [Y0ijDi = 1] (ATT)

+E [Y0ijDi = 1]� E [Y0ijDi = 0] (Selection bias),

which, if Di is independent of potential outcomes, becomes

E [YijDi = 1]� E [YijDi = 0] = E [Y1ijDi = 1]� E [Y0ijDi = 1] (ATT)

Hence, we can infer the ATT from the di¤erence in means. In fact, this coincides with the average

treatment e¤ect in the entire population (i.e. regardless of actual treatment status) since

E [Y1ijDi = 1]� E [Y0ijDi = 1] = E [Y1i]� E [Y0i] :

This is often referred to as simply as the average treatment e¤ect (ATE).

Notice that, under random assignment of treatment, ATT or ATE can be obtained by running the

following simple OLS regression:

Yi = �0 + �1Di + ui;

where the estimate of �1 is the estimated ATT and ATE. More on this below.
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You see how powerful the method of randomization is. Provided you get the design of your experiment

right, all you need to do is to compare mean values across the two groups (Di = 0; Di = 1). If done right,

a pure randomized experiment is in many ways the most convincing method of evaluation.

It sounds easy, but, of course, life is never easy. Experiments have their own drawbacks:

� They are rare in economics, and often expensive to implement. �Social experiments�carried out in

the U.S. typically had very large budgets, with large teams and complex implementation. However,

quite a few randomized evaluations have recently been conducted in developing countries on fairly

small budgets. Indeed, this approach has become extremely popular in the development economics

literature.

� They may not be amenable to extrapolation. That is, there may be questionmarks as to the

external validity of the results of a particular experiment. The main reasons are: i) it may be very

hard to replicate all components of the program elsewhere; ii) the results may be speci�c to the

sample (you might argue this is a general problem in empirical economics - that may well be true,

but typically experiments are conducted in relatively small regions, which possibly exacerbates the

problem); iii) the results may be speci�c to the program (would a slightly di¤erent program have

similar e¤ects?).

� There may be (lots of) practical problems related to the implementation of experiments. Getting

the design of the experiment right really is the big challenge, and as you can imagine much can go

wrong in the �eld. Suppose you start to give free school meals randomly in 50% of the schools in a

region where previously school meals were not free. One year later you plan to turn up and compare

pupil performance in treated and nontreated schools. But how can you be sure parents whose kids

are in nontreated schools have not reacted to your reform by changing schools? Or could treatment

a¤ect the decision as to when someone should leave school? The basic point is that you typically

need time between initiating the treatment and measuring the outcome, and much can go wrong in

the meantime. There may be ethical issues: why give some people treatment and not others? How
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justify not helping those that need it the most?

For these reasons, most empirical research is still based on non-experimental (observational) data.

When we have non-experimental data, we must assume that individuals at least partly determine whether

they receive treatment. As we have seen, this may lead to problems with the simple di¤erence-in-means

estimator if the individual�s decision to get treatment depends on the bene�ts of treatment (selection

bias). Addressing this problem is largely what the literature on treatment e¤ect estimation based on

non-experimental data is about. Notice that this is precisely the problem solved by randomization.

Indeed, it is useful to take the position that a notional randomized trial is our benchmark.

3.3. Regression Analysis of Experiments

Regression analysis is the key tool for analyzing experimental as well as non-experimental data in applied

economics. Suppose for a moment that the treatment e¤ect is the same for everybody,

Y1i � Y0i = �:

In this case, we can re-write our expression for observed outcomes in regression form:

Yi = Y0i + (Y1i � Y0i)Di

= E (Y0i) + �Di + fY0i � E (Y0i)g

= �+ �Di + �i;

where the residual �i is interpretable as the random part of Y0i. Now take expectations, conditional on

treatment and no treatment:

E [YijDi = 1] = �+ �+ E [�ijDi = 1]

E [YijDi = 0] = �+ E [�ijDi = 0] ;
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so that

E [YijDi = 1]� E [YijDi = 0] = � (treatment e¤ect)

+E [�ijDi = 1]� E [�ijDi = 0] (selection bias).

You see how in this framework the selection bias amounts to non-zero correlation between the regression

error term �i and the regressor Di. Since

E [�ijDi = 1]� E [�ijDi = 0] = E [Yi0jDi = 1]� E [Yi0jDi = 0] ;

this correlation re�ects the di¤erence in potential outcomes (under no treatment) between those who get

treated and those who don�t. It is also clear that, if Di is randomly assigned, there is no selection bias

so that a regression of observed outcomes Yi on actual treatment status Di estimates the causal e¤ect of

interest (�).

Covariates. Covariates - other explanatory variables, or �controls� - are often included in regression

speci�cations even if treatment was randomly assigned. There are two reasons for this.

1. The experimental design may be conditional random assignment. For example, suppose students

are randomly assigned to classes of di¤ering size within schools; but suppose the average class size

di¤ers across rural and urban schools. Then it becomes important to control for (in this case) rural

or urban school in the regressions.

2. Inclusion of relevant control variables may increase the precision with which we can estimate

the causal e¤ect of interest. This is because including the control variables reduces the residual

variance, which in turn lowers the standard error of the regression estimates (recall: V
�b�OLS� =

�2 (X 0X)
�1). Note that, if Di is randomly assigned, adding control variables to the speci�cation

should not result in a very di¤erent estimate of � compared to a speci�cation without control

variables.
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We will return to this and other related points later in the course.

4. Making Regression Make Sense

Reference: AP, Chapters 3.1, 3.4.1, 3.4.3 (optional).

We now turn to the �rst chapter of Part II: The Core in AP. The style of this chapter is more formal

than what you encounter in chapters 1-2, focusing mostly on the link from population parameters to

estimates based on �nite samples, and the statistical properties of regression estimates. You may �nd

part 3.1 quite dry. Unfortunately, it is also quite important.

4.1. Regression Fundamentals

Why are we using regression in empirical research? Let�s go back to the fundamentals.

4.1.1. The Conditional Expectation Function

The Conditional Expectation Function (CEF) for a dependent variable Yi, given a K � 1 vector of

covariates Xi (with elements xit) is the expectation - or the population average - of Yi with Xi held �xed.

We write the CEF as

E [YijXi] ;

hence the CEF is a function of Xi. Because Xi is random, so is the CEF.

For continuous Yi with conditional density fY (tjXi = x) at Yi = t, the CEF is

E [YijXi = x] =
Z
tfY (tjXi = x) dt;

whereas for discrete Yi it is

E [YijXi = x] =
X
t

tP (Yi = tjXi = x) :

Note that expectation is a population concept. In empirical research, we use samples to make inference

about the population; e.g. the sample CEF is used to learn about the population CEF. But remember:
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the objects of interest apply for the population, hence we start by de�ning these population objects.

An important complement to the CEF is the law of iterated expectations, which says that an

unconditional expectation can be written as the unconditional average of the CEF:

E [Yi] = E fE [YijXi = x]g ;

where the outer expectation uses the distribution of Xi. See p. 32 in AP for a proof.

Next, consider three theorems that summarize important properties of the CEF.

Theorem 3.1.1 The CEF Decomposition Property

Yi = E [YijXi] + "i;

where "i is mean independent of Xi (i.e. E ["ijXi] = 0), and therefore "i is uncorrelated with any function

of Xi. See AP for a proof (it�s straightforward).

Theorem 3.1.2 The CEF Prediction Property Let m (Xi) be any function of Xi. The CEF solves

E [YijXi] = arg min
m(Xi)

E
h
(Yi �m (Xi))2

i
;

hence the CEF is the minimum mean squared error predictor of Yi, given Xi.

Proof: Subtract and add E [YijXi] inside the brackets, then expand:

(Yi �m (Xi))2 = (fYi � E [YijXi]g+ fE [YijXi]�m (Xi)g)2

= fYi � E [YijXi]g2

+2 fYi � E [YijXi]g fE [YijXi]�m (Xi)g

+ fE [YijXi]�m (Xi)g2 :
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Note the penultimate line has expectation zero since Yi � E [YijXi] can be replaced by "i. Finally, note

that the last term is minimized at zero when m (Xi) is the CEF.

Theorem 3.1.3 The ANOVA Theorem

V (Yi) = V (E [YijXi]) + E [V (YijXi)] ;

where V (�) denotes variance and V (YijXi) is the conditional variance of Yi, given Xi. This says that the

variance of Yi can be written a the variance of the CEF plus the variance of the residual. See AP for a

proof.

4.1.2. Linear regression and the CEF

The CEF provides a natural summary of empirical relationships. For example, it shows how the con-

ditional expectation of log earnings varies with years of education. So we consider the CEF an object

of interest. Now let�s think about how the CEF links to regression. We de�ne the K � 1 population

(note!) regression coe¢ cient vector � as the solution to the following minimization problem:

� = argmin
b
E
h
(Yi �X 0

ib)
2
i
:

Since there are K parameters, there will be K �rst-order conditions of the form

2E [(Yi �X 0
ib)X1] = 0

2E [(Yi �X 0
ib)X2] = 0

(:::)

2E [(Yi �X 0
ib)XK ] = 0;
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which we can write in more compact form as:

E [Xi (Yi �X 0
ib)] = 0

where the 0 is now understood to be a K � 1 vector of zeros. We can now solve for �:

E [Xi (Yi �X 0
i�)] = 0

� = (E [XiX
0
i])
�1
E [XiYi] :

Note that � are not estimators. These coe¢ cients are simply features of the joint distribution of depen-

dent and independent variables.

Key question at this point: Is the vector of population regression coe¢ cients of any interest?

AP o¤ers three reasons the vector of regression coe¢ cients might be of interest. The premise of this

discussion is that you are interested in the CEF.

Theorem 3.1.4 The Linear CEF Theorem. Regression Justi�cation I: Suppose the CEF is

linear. Then the population regression function (X 0
i�) is the CEF.

Proof: So we have a linear CEF, e.g. the form is:

E [YijXi] = X 0
i�
�,

where �� is a K � 1 vector of coe¢ cients. The claim is that �� = �. Is this true? We saw above that

one property of the the CEF is

E [Xi"i] = 0;

hence

E [Xi (Yi � E [YijXi])] = 0:
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Now plug in our assumed form for the CEF:

E [Xi (Yi �X 0
i�
�)] = 0;

and solve for ��. We obtain

�� = (E [XiX
0
i])
�1
E [XiYi] = �.

Hence, if

� ....you are interested in the CEF; and

� ....you have reason to believe the CEF is linear,

then you regression is an appropriate method for estimating your object of interest.

Of course, the CEF may not be linear. In such cases, we need a di¤erent justi�cation for using

regression.

Theorem 3.1.5 The Best Linear Predictor Theorem. Regression Justi�cation II: The regres-

sion function (X 0
i�) is the best linear predictor of Yi given Xi; in a MMSE sense (i.e. no other vector of

coe¢ cients can generate a lower mean squared error than the regression coe¢ cient vector �, in the class

of linear functions)

Proof: This follows immediately from the de�nition of � (minimizes the sum of squared residuals,

hence minimizes the MSE).

Theorem 3.1.6 The Regression CEF Theorem. Regression Justi�cation III: The regression

function (X 0
i�) provides the MMSE linear approximation to the CEF (E [YijXi]); that is,

� = argmin
b
E
h
(E (YijXi)�X 0

ib)
2
i
:
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Proof: We know the de�nition of �:

� = argmin
b
E
h
(Yi �X 0

ib)
2
i
:

Now write

(Yi �X 0
ib)

2
= ([Yi � E (YijXi)] + [E (YijXi)�X 0

ib])
2

(Yi �X 0
ib)

2
= [Yi � E (YijXi)]2

+ [E (YijXi)�X 0
ib]

2

+2 [Yi � E (YijXi)] [E (YijXi)�X 0
ib] :

Once we take expectations on both sides, the last line disappears (expectation zero). Note that the

�rst term does not involve b. Hence, since � minimizes E (Yi �X 0
ib)

2, it must be true that � minimizes

E
h
(E (YijXi)�X 0

ib)
2
i
as well (expectations operator applied to the penultimate line). And that�s what

we were supposed to prove.

These may strike you as quite esoteric points. But the discussion is really fundamental. The object

of interest in most empirical studies is the CEF, and regression is a very useful tool for shedding light on

it.

4.1.3. Asymptotic OLS Inference

In practice, the CEF and the population regression vector are unknown. Using samples, we draw infer-

ences about these quantities. We may, for example, want to test the hypothesis that some element �k

of the population regression vector is equal to zero. To do this, we need to know something about the

sampling distribution of the estimate of �k.
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Recall the de�nition of the population regression vector:

� = (E [XiX
0
i])
�1
E [XiYi] :

As you know, the OLS estimator of � is obtained by replacing population moments with sample moments:

�̂ =

"X
i

XiX
0
i

#�1X
i

XiYi

a practice justi�ed by the law of large numbers (stating that your sample moments get arbitrarily close

to the population moments as the sample size increases). In order to do inference for the population

vector, we need to understand the sampling distribution of �̂ - think of this as the distribution of �̂ that

would result from repeated sampling from the population.

To derive the asymptotic sampling distribution of �̂ we make use of the central limit theorem and the

Slutsky theorem. These are stated in AP, page 43, and summarized here:

� Central limit theorem: Sample moments are asymptotically normally distributed after subtracting

the corresponding population moment and multiplying by the square root of the sample size.

� Slutsky theorem: The asymptotic product of two random variables, one of which converges in

distribution and the other converges in probability to a constant, is una¤ected by replacing the one

that converges to a constant by this constant.

Now write:

Yi = X
0
i� + [Yi �X 0

i�] � X 0
i� + ei;
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where ei is a residual, uncorrelated with Xi. Use this equation to re-write the expression for �̂:

�̂ =

"X
i

XiX
0
i

#�1X
i

XiYi

�̂ =

"X
i

XiX
0
i

#�1X
i

XiX
0
i� +

"X
i

XiX
0
i

#�1X
i

Xiei

�̂ = � +

"X
i

XiX
0
i

#�1X
i

Xiei:

It follows that

p
N
�
�̂ � �

�
= N

"X
i

XiX
0
i

#�1
1p
N

X
i

Xiei: (4.1)

It then follows from the Slutsky theorem - which states that the asymptotic product of two random

variables, one of which converges in distribution and the other converges in probability to a constant, is

una¤ected by replacing the one that converges to a constant by this constant - that (4.1) has the same

asymptotic distribution as

E [XiX
0
i]
�1 1p

N

X
i

Xiei:

The central limit theorem implies that 1p
N

P
iXiei is asymptotically normally distributed with mean

zero and covariance matrix E
�
XiX

0
ie
2
i

�
, since this matrix is the covariance matrix of Xiei:

Therefore, �̂ has an asymptotic normal distribution with probability limit � and covariance matrix

E [XiX
0
i]
�1
E
�
XiX

0
ie
2
i

�
E [XiX
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: (4.2)

The theoretical standard errors used to construct t-statistics are the square roots of the diagonal elements

of this matrix. In practice, these standard errors are estimated by using sums for expectations and

estimated residuals. Standard errors computed in this way are known as heteroskedasticity-consistent

standard errors (White, 1980). In Stata, you can get such standard errors by adding "robust" to the

regression options. These are asymptotically valid in the presence of any kind of heteroskedasticity,

including homoskedasticity. Therefore, it would seem you might as well always use robust standard
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errors, in which case you can remain agnostic as to whether there is or isn�t heteroskedasticity in the

data. As we shall see later on in the course, the formula (4.2) can be tweaked depending on the nature of

the problem, e.g. to take into account arbitrary serial correlation in panel data or intra-cluster correlation

of the residual in survey data.

Default standard errors are derived under a homoskedasticity assumption:

E
�
e2i jXi

�
= �2,

which is a constant. This implies the covariance matrix reduces to

�2E [XiX
0
i]
�1
:

I think it�s safe to say that, these days, most empirical papers report robust standard errors.

4.1.4. Saturated models, main e¤ects and other regression talk

Saturated models are regression models with discrete explanatory variables, where the model includes a

separate parameter for all possible values taken on by the explanatory variables. For example, if you�re

modelling log wage as a function of education, you may construct dummy variables for every level of

education:

Yi = �+ �1d1i + �2d2i + :::++��d�i + "i;

where dji is a dummy for schooling level j and �j is the jth-level schooling e¤ects. Note that a saturated

regression model �ts the CEF perfectly, since the CEF is a linear function of the dummy regressors used

to saturate (i.e. the CEF takes on � values only).

If there are two explanatory variables - e.g. one dummy for college education and one dummy for

sex, the model is saturated by including these two dummies, their product (an interaction term) and a

constant. See AP, pp.50-51 for a nice example and further discussion.
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4.1.5. Weighting regression

The premise so far in the discussion has been that the sample is drawn randomly from the population.

In fact, in many datasets this is not true by design, since certain types of individuals are �oversampled�.

If sampling weights wi are available, de�ned as the inverse of the probability of being included in the

sample, we can use weighted regression to mimic a random sample (and, hopefully, get closer to the

population object of interest e.g. �). This is easily done in Stata (e.g. by using pweights).

Weighting is sometimes used to solve quite a di¤erent problem, namely one posed by heteroskedasticity.

The idea here is to transform the dependent and independent variable by means of some suitably chosen

weight so as to make the residual variance constant, and then do regression - e.g. weighted least squares.

You don�t often see this kind of approach these days - perhaps mainly because robust standard errors

take care of the main problem posed by heteroskedasticity.
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