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1 Introduction

Over the last two decades there have been radical changes in economic policy
in many developing countries. A common factor in these changes has been a
transition from economies where government controls were extensive to more
open, market-oriented, regimes.

The private sector plays a crucial role in this process, and it is important that this
sector performs well. In fact, the main reason we are interested in understanding
the determinants of performance in the private sector is that we believe better
performance raises the incomes and the standards of living of people in poor
countries. In this lecture we have a look at the microeconomics of �rms and
farms in developing countries, focussing on issues related to productivity (a key
indicator of performance).
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2 Estimating and Analyzing the Productivity of
Firms & Farms

� In so far as there is one thing on which economists appear to be able to
agree it is the desirability of higher productivity.

� The role of scale is important:

� Looking at labour productivity (de�ned as some measure of output per
worker) across �rms of di¤ering size, it�s very clear it is higher in large
than small �rms. Söderbom and Teal, Ghana (2004).

� In contrast, a widespread view is that small farms are more productive
than large farms. As we shall see, the paper by Lamb (2001) refutes
this notion, concluding that large farms are as productive as small ones.



� The most common analytical tool used to assess productivity di¤erences
at the micro level is the production function. I will now discuss some
methodological issues that arise whenever we estimate production functions
using micro data.



2.1 The production function

You know from basic macroeconomics that the notion of technology, or pro-
ductivity, is central. Consider the production function

yi = �li + �ki + ai;

where yi; li; ki denote log output, labour and capital, respectively, and ai is
total factor productivity (TFP). TFP is typically assumed unobserved (at least
partially).

Returns to scale Why are the parameters � and � of economic interest? We
said above that one of the issues in this literature concerns how performance



varies by �rm or farm size. In particular, if the economy�s �xed set of inputs
is allocated to a small number of large �rms results in more aggregate output
than if allocated to a large number of small �rms, it would be e¢ cient to
steer resource allocation towards large �rms. This is essentially a discussion of
returns to scale.

Consequently, one null hypothesis often tested for in production function studies
is H0 : �+ � = 1.

� If we cannot reject this hypothesis then we cannot reject the hypothesis
that the production function exhibits constant returns to scale.

� If �̂+ �̂ > 1 this is evidence for increasing returns.



� In fact, the evidence on returns to scale in developing countries is most
consistent with constant returns to scale (see Söderbom and Francis Teal,
2004). That is, while there are many small �rms in developing countries,
this does not imply foregone scale economies.

Total factor productivity (TFP) An important measure of �rm performance
is total factor productivity. Is it the case, for example, that foreign owned
�rms can get more output out of a given set of inputs than domestic �rms? Are
�rms that export more e¢ cient in transforming inputs into output than non-
exporters? To answer questions like these we need to estimate TFP (because,
as already noted, TFP is generally not observed). Clearly this requires reliable
estimation of � and �.

So you see production functions are useful in several ways. Estimation of
production functions is, however, not entirely straightforward. The two most
likely sources of bias are



� Omitted variables correlated with the inputs

� Measurement errors in explanatory variables



Omitted variables It seems quite possible that the �rm�s capital and labour
decisions are in�uenced by factors that are unobserved to the econometrician.
This would set up a correlation between the regressors and the residuals. To
illustrate, consider a simple Cobb Douglas production (no capital, for simplicity)

Yi = AiL
�
i (1)

where � < 1, Yi; Li are observed measures of output, and labour respectively,
and Ai is a TFP, is observed by the �rm but not by the econometrician. The
�rm chooses inputs and output to maximize net revenue

Ri = PiYi �WiLi (2)

where Wi is the wage rate and Pi the unit output prices. Assuming that both
prices are exogenous, the �rst order condition for optimal labour is

Pi

 
@Yi
@Li

!
=Wi; (3)



which can be written as

lnLi =

 
1

1� �

!
(ln� + lnP + lnAi � wi) :

Clearly lnLi and lnAi are correlated, so if we estimate the production function

lnYi = � lnLi + lnAi

by OLS we will not obtain reliable (unbiased) estimates of �. This is the basic
endogeneity problem for estimation of production functions.

If the omitted variable is time invariant within �rms (but varying across �rms),
a panel data approach will solve the problem as the unobservables will be
absorbed by the �xed e¤ect. One plausible example of an unobserved time
invariant factor is �managerial quality�.

However, there may be time varying unobservables which are correlated with
the inputs. In such a case we cannot identify the technology parameters by OLS



or �xed e¤ects. In that case, an instrumental variable approach appears to be
the best way of addressing the problem. Possible instruments: factor prices if
observed (have to be uncorrelated with TFP of course); possibly lagged inputs.



Measurement errors The problems posed by measurement errors are di¤er-
ent to those posed by omitted variables. In general, we expect measurement
errors in inputs to lead to downward bias (attenuation bias) in the estimated
coe¢ cients. Recall the attenuation bias formula:

yit = �x�it + vit;

where x�it is the true but unobserved value of the explanatory variable, and vit
is a non-autocorrelated, homoskedastic error term with zero mean. We observe
an imperfect measure of x�it , namely xit such that

xit = x�it + uit;

where uit is a random measurement error uncorrelated with x�it. Our estimable
equation is

yit = �xit + (vit � �uit) ;



so the regressor xit is correlated with the error term (vit � �uit). It can be
shown that this will lead to a downward bias in the OLS estimate of � - that is,
estimated � is lower than true �. To give you an idea of what the bias looks
like, consider the following formula showing the bias caused by measurement
errors:

p lim �̂
OLS

= �

 
�2x�

�2x� + �2u

!
;

where �2x� is the variance of the true, unobserved explanatory variable, and �
2
u

is the variance of the measurement error. The operator p lim can be thought of
as showing the value of estimated � in a large sample. Loosely speaking, this
is what we can expect to get if there are measurement errors in the explanatory
variable. Clearly the higher the variance of the measurement error, the more
severe is the bias. In particular estimating the coe¢ cient on the capital stock
whilst controlling for �xed e¤ects has proved di¢ cult - see Söderbom and Teal,
2004, for details.



3 Size and productivity in Ghana�s manufactur-

ing sector

Reference: Söderbom and Teal (2004).

� Manufacturing - an engine of growth? Even though manufacturing is
far from the largest sector in African economies, it is often considered
�special�, for reasons discussed above (engine of growth argument).

� But with a few exceptions (Mauritius), African manufacturing is not doing
well:



� The share of SSA in world mfg value-added: 0.8 percent; the share in
world mfg exports: 0.7 percent.

� The share in world income: 1.1 percent; the share in world population:
11 percent.

� 1972-2002: mfg value-added per capita in SSA fell from USD 98 to
USD 85 in constant 1995 values.

� More generally, foreign investors do not see Africa as a promising loca-
tion for investment (extensive outsourcing to Asia - very little to Africa).
Africans themselves keep a large share of their wealth outside Africa (40%
according to Collier, Hoe­ er and Pattillo, 2001).

� Still, the view that Africa�s private sector can contribute to poverty reduc-
tion by generating more jobs remains widespread. How generate success?



� In the early 1990s extensive manufacturing surveys were initiated in Africa
as part of the World Bank�s Regional Program on Enterprise Development
(RPED). Generated rich �rm-level data, which opened up new avenues for
research. Numerous similar surveys have now been �elded in sub-Saharan
Africa, and quite a few academic papers based on the data have been
written.

� An important general insight based on the �rm-level data is that there
is substantial heterogeneity across �rms, within countries, with respect to
key economic variables. Most �rms have not fared well during the last
10-15 years - but some have performed very well indeed.

� Understanding the causes, consequences and implications of heterogeneity
in performance across �rms is important. To this end, �rm-level data must
be available.



3.1 Söderbom& Teal: Motivation and theoretical under-

pinnings

Three prominent issues in policy discussions of the problems facing �rms in
developing countries:

1. Firms in developing countries lack the technical capacity to perform well.
�Without an increase in pro�ciency, the responsiveness of output to even
the best designed structural adjustment program is likely to be limited.
Prices are one-half of a scissor, the other being technical skill�, Pack (1993,
p. 1).

2. Technology di¤erences explain factor choices across �rms of di¤ering size
(this argument is usually attributed to work done by Howard Pack in the



1970s & 80s). Small �rms have come to be identi�ed with more labour
intensive technologies - hence promoting small-scale enterprises is seen as
a means of creating jobs.

3. Factor prices di¤er by �rm size, due to market failures. This explains why
larger �rms are more capital intensive than smaller ones - larger �rms face
a lower cost of capital and a higher cost of labour.

Söderbom & Teal investigate the relative importance of the possible reasons
for poor performance in African manufactures: lack of skills and the extent of
scale, technical and allocative ine¢ ciency.

� Data: A seven year panel of plant-level data from Ghana�s manufactur-
ing sector. The existence of a panel means we can estimate a production



function controlling for time-invariant unobserved skills. Data on the hu-
man capital in the �rms exist, hence can investigate whether skills play an
important role in the e¢ ciency with which �rms perform.

3.1.1 Technology and factor choice

The �rm�s demand for capital (K) and labour (L) depends on the �rm�s tech-
nology and factor prices.

Factor intensities (K=L) vary substantially across �rms. Two possible mecha-
nisms:



� Technology is homothetic and the relative cost of capital decreases with
size. In this case large �rms choose more capital per employee than small
ones because capital is relatively cheaper. Why would factor prices vary
across �rms? In a perfect market they would equalize, ruling out arbitrage,
yes? Indeed. Varying factor prices in the cross-section is indicative of
market failures - e.g. perhaps limited access to credit for small �rms drives
up the shadow cost of capital.

� Technology is non-homothetic and the relative factor prices are constant
across �rms. Large �rms have higher capital-labour ratios because of the
nature of the technology, it�s got nothing to do necessarily with varying
prices or market failures.

[Figure: nonhomothetic technology; varying relative factor prices]
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3.1.2 Total Factor Productivity

Consider the simple production function again:

yi = �li + �ki + ai:

What kinds of question might be interesting to ask about ai?

� What�s the average level of TFP (�rst moment)? Does it vary with ob-
servable characteristics (e.g. ownership, location)?

� How much variation is there in TFP across �rms at a point in time (second
moment)?



� How do the �rst & second moments develop over time, say in response to
policy reforms or technological innovations?

In any case, TFP is unobserved and so has to be estimated.

But hard to distinguish genuine variation in TFP from noise in the dependent
variable. Some possible methods:

� Data envelopment analysis (DEA) - no functional form assumptions
about the relationship between inputs and output which is nice; however
the computed ine¢ ciency scores are very sensitive to measurement errors,
either in output or the input variables. Basically, deviations from the fron-
tiers arise only because of ine¢ ciency; random noise doesn�t play a role



by assumption. Might be �ne if you have very good data on a homoge-
nous industry - but not if you�re analyzing noisy survey data on �rms with
di¤erent inputs & outputs.

� Stochastic frontier analysis - accommodates statistical noise in the de-
pendent variable by means of introducing a residual, while treating inef-
�ciency as a random parameter. Parametric assumptions enable you to
distinguish between noise and ine¢ ciency but these assumptions are more
or less arbitrary. Another unattractive feature is that the ine¢ ciency term
typically is assumed to be uncorrelated with the explanatory variables in
the frontier production function. If the ine¢ ciency terms are in fact cor-
related with �rm attributes, the estimated parameters and the ine¢ ciency
scores from such models will be biased.�



� If panel data are available, and ine¢ ciency is approximately constant over
time, then we can model ine¢ ciency as a time invariant �rm speci�c e¤ect.
This is the route taken in the paper. No assumptions about the distribution
of ine¢ ciency are needed, and the ine¢ ciency can be correlated with the
arguments of the production function.

� The production function is thus written as

Yit = AitF (Zit)Uite
"it;

where Yit is output, AitF (Zit) is the output frontier (maximum output
attainable with technology Ait and input vector Zit), F (:) denotes the
production function, Uit is an index of ine¢ ciency (1=fully e¢ cient; less
than 1 = ine¢ cient), and "it is time varying unobservables determining
recorded output (could be measurement errors in output or inputs; could
also be unobserved genuine economic factors such as demand shocks).



3.1.3 Allocative E¢ ciency

� Allocative ine¢ ciency is de�ned in the paper as a situation arising when
as a result of price di¤erentials �rms of di¤ering size select di¤erent factor
combinations. Notice that allocative ine¢ ciency de�ned like this is not
the result of optimization errors made by the �rm. Such di¤erentials may
be due, for example, to non-competitive factor markets or di¤erential
taxation on �rms of di¤ering size.

� Why this de�nition of allocative ine¢ ciency? Because we think of the
counterfactual as the factor choices that would be made if there were
no price di¤erentials. Actual choices are di¤erent and there will be an
opportunity cost associated with the di¤erence.



3.2 The production function

� Need a functional form that is su¢ ciently �exible to allow for non-homotheticity.
Translog:

lnFit =
X
j

�j lnXjit + 1=2
X
k

X
m
�km lnXkit lnXmit; �rs = �sr;

where Xj is the jth input in the production function, j = 1; 2; :::; J and
� denotes parameters to be estimated.

� Testable hypotheses:

Homotheticity :
X
k

�km = 0; m = 1; 2; :::J

Constant returns to scale :

(
HomotheticityP

k �k = 1

)
Cobb-Douglas : �km = 0, k = 1; 2; :::J ;m = 1; 2; :::; J



� Empirical speci�cation is augmented with �rm-level averages of employees�
years of education, tenure, age and age squared. Note similar to the
Mincerian earnings function.

� Empirical speci�cation:

lnFit =
X
j

�j lnXjit+1=2
X
k

X
m
�km lnXkit lnXmit+�hit+�i+�t+"it;

where h is the vector of human capital variables, �i = � logUi measures
inverse ine¢ ciency (think: e¢ ciency), and �t is a time e¤ect common to
all �rms.

� Main estimation problem: inputs (labour, capital, intermediate inputs) are
potentially endogenous, because managers may observe error term (re�ect-
ing, say, demand shocks while the econometrician doesn�t).



� To deal with this we use instrumental variables, using lagged values of the
explanatory variables as instruments. We take �rst di¤erences to wipe out
the �rm e¤ects. In the case of highly persistent data, lagged variables in
levels are likely to be weak instruments for contemporaneous di¤erences.
We therefore follow Blundell and Bond and combine the di¤erenced equa-
tion with a levels equation to form a system generalised method of moments
(GMM) estimator.

� Thus, we use lagged levels as instruments for contemporaneous di¤erences
and lagged di¤erences as instruments for contemporaneous levels.



3.3 Data

� Panel data on manufacturing �rms in Ghana, collected in face-to-face in-
terviews. 1991 to 1997. Estimation sample consists of 676 observations -
thus small sample.

� A sample of workers and apprentices was chosen from each �rm. It is
therefore possible to use the responses from workers in the �rm to create
�rm-level averages of worker characteristics.

[Table 1: descriptive statistics].



those with from 6 to 30, medium those with from 31 to 99, and large those with 100, or more,

employees. The upper panel of the table (under the heading ‘Conditional means’) shows

mean values for the monetary and human capital variables, purged of sectoral and time

effects as explained in the notes to the table.11 The fact, shown in Table 1, that the capital–

labour ratio differs substantially across firms of differing size when the data are purged of

sectoral effects is important for establishing that it is not differences in technology related to

Table 1

Summary statistics

[1] Micro [2] Small [3] Medium [4] Large [5] All

Conditional meansa

Log output per employee 13.75 (0.12) 13.91 (0.06) 14.08 (0.07) 14.68 (0.10) 14.08 (0.04)

Log value-added per employee 12.48 (0.15) 12.67 (0.07) 12.92 (0.09) 13.68 (0.12) 12.90 (0.05)

Log capital per employee 12.39 (0.19) 12.48 (0.09) 13.73 (0.12) 14.72 (0.16) 13.22 (0.06)

Ratio of value-added to output 0.34 (0.02) 0.36 (0.01) 0.38 (0.01) 0.39 (0.02) 0.37 (0.01)

Average education in years 9.58 (0.27) 9.81 (0.13) 10.28 (0.16) 11.27 (0.22) 10.18 (0.09)

Average age in years 26.52 (0.78) 28.69 (0.38) 33.43 (0.47) 35.55 (0.64) 31.02 (0.26)

Average tenure in years 3.38 (0.48) 4.22 (0.24) 6.90 (0.29) 7.21 (0.39) 5.42 (0.16)

Log average labour cost 11.94 (0.10) 12.25 (0.05) 12.67 (0.06) 13.05 (0.08) 12.48 (0.03)

Unconditional means

Firm age (years) 15.17 14.45 19.28 22.87 17.39

Any foreign ownership (proportion) 0.14 0.07 0.23 0.59 0.22

Any state ownership (proportion) 0.00 0.02 0.09 0.06 0.05

Industry (proportions)

Food and bakery 0.32 0.22 0.18 0.25 0.22

Wood 0.00 0.03 0.06 0.29 0.08

Furniture 0.13 0.28 0.27 0.20 0.25

Textiles and garments 0.33 0.16 0.20 0.00 0.16

Metal and machinery 0.22 0.31 0.28 0.25 0.28

Location (proportions)

Accra (capital city) 0.32 0.60 0.63 0.55 0.57

Cape 0.06 0.02 0.03 0.03 0.03

Kumasi 0.49 0.35 0.28 0.13 0.30

Takoradi 0.14 0.03 0.06 0.29 0.10

Number of observations 72 292 193 119 676

Number of firms 15 61 40 27 143

The size of the firm is its total number of employees when first observed in the sample, where a micro firm has

less than 6 employees, a small firm has from 6 to 29, a medium firm has from 30 to 99, while a large firm has 100,

or more, employees. The figures in ( ) are standard errors. All monetary variables have been deflated using firm-

level price indices.
a The numbers reported in Columns [1]– [4] are predictions based on OLS regressions in which the regressors

are sector, time and size dummies. The predicted values are calculated using sample means of the sector and time

dummies, i.e. of the form ŷsize_i=â�size_i + b̂ �x̄, where size_i indicates the ith size category, x̄ is the vector of mean

values of the sector and time dummies, and â and b̂ are estimated coefficients. The numbers reported in the fifth

column are predictions based on sample means of all regressors, hence they are effectively (unconditional) sample

means.

11 Because the panel is unbalanced, the sample composition is not constant over time. To ensure that the

summary statistics are not driven by changes in the sample composition during the course of the surveys, we

purge the variables of time effects.

M. Söderbom, F. Teal / Journal of Development Economics 73 (2004) 369–394376



3.4 Results

OLS and �xed e¤ects results are shown in Table 2. Brief summary:

� OLS:

� No strong evidence of non-homotheticity or variable returns to scale.

� The Cobb-Douglas speci�cation can easily be accepted given the translog
functional form with the value-added speci�cation, but not with the
output model.

� The human capital coe¢ cients all have the anticipated signs, however
only the age e¤ect, which is a quadratic, is signi�cant.



� Fixed e¤ects:

� Unreasonable results - e.g. capital coe¢ cient negative!?

� Could be due to measurement errors in inputs - the bias gets worse if
you di¤erence the data. IV methods could solve/mitigate this problem.

[Show Table 2 here]



Table 2

OLS and within estimates of production function parameters

Dependent variable: log value-added Dependent variable: log output

Translog Cobb–Douglas Translog Cobb–Douglas

[1] OLS [2] Within [3] OLS [4] Within [5] OLS [6] Within [7] OLS [8] Within

Marginal effectsa

Log employment 0.84 (8.79)** 0.30 (1.31) 0.89 (9.74)** 0.34 (1.59) 0.10 (3.33)** 0.03 (0.46) 0.14 (3.78)** 0.08 (1.18)

Log capital 0.20 (3.57)** � 0.25 (0.65) 0.18 (3.43)** � 0.22 (0.59) 0.02 (1.68)+ � 0.06 (0.46) 0.03 (2.12)* � 0.06 (0.53)

Log raw materials 0.72 (37.49)** 0.69 (22.78)** 0.71 (29.12)** 0.65 (17.12)**

Log indirect costs 0.15 (8.07)** 0.11 (4.51)** 0.12 (5.19)** 0.10 (3.47)**

Human capital coefficients

Education 0.04 (1.63) 0.02 (0.57) 0.04 (1.59) 0.02 (0.53) 0.01 (2.53)* 0.00 (0.35) 0.01 (2.11)* 0.00 (0.35)

Age 0.13 (2.19)* 0.21 (3.08)** 0.13 (2.04)* 0.20 (3.09)** 0.05 (3.04)** 0.07 (2.59)** 0.04 (2.53)* 0.08 (3.01)**

Age2/100 � 0.20 (2.26)* � 0.33 (3.46)** � 0.19 (2.09)* � 0.33 (3.49)** � 0.07 (2.96)** � 0.11 (2.82)** � 0.06 (2.58)** � 0.13 (3.33)**

Tenure 0.03 (1.70)+ 0.05 (2.46)* 0.03 (1.43) 0.05 (2.56)* 0.004 (1.08) 0.01 (2.55)* 0.01 (1.35) 0.02 (3.47)**

Diagnostics and tests

R2 0.74 0.10 0.74 0.09 0.98 0.82 0.97 0.80

Quasi-concavity (proportion) 1.00 0.61 0.44 0.04

Monotonicity (proportion) 1.00 0.00 0.69 0.04

Homotheticityb ( p-value) 0.30 0.64 0.25 0.68

Homotheticity and

CRSc ( p-value)

0.36 0.21 0.39 0.04 0.31 0.49 0.86 0.06

Cobb–Douglas ( p-value)d 0.49 0.82 0.00 0.00

Time dummies are included in all regressions. The OLS regressions include controls for the age of the firm, industry, ownership structure and location. The numbers in ( )

are t-statistics based on standard errors robust to heteroskedasticity. Significance at the 1%, 5% and 10% level is indicated by *, ** and +, respectively.
a For the translog specification, the marginal effects is a function of the inputs, and have therefore been evaluated at the sample means. For the Cobb–Douglas

specification, the marginal effects are equal to the estimated coefficients.
b H0:

X
k

bkm ¼ 0; m ¼ 1; 2; . . . ; J (see Eq. (3)).

c For translog specifications, H0:
X
k

bkm ¼ 0; m ¼ 1; 2; . . . ; J , and
X
k

bk ¼ 1. For Cobb–Douglas specifications, H0:
X
k

bk ¼ 1 (see Eq. [3]).

d H0: bkm = 0, k = 1,2,. . .,J, m= 1,2,. . .,J (see Eq. (3)).
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System GMM results - supposedly robust to endogeneity problems - are shown
in Table 3. Summary:

� Cobb-Douglas results for the value-added speci�cation are reported in Col-
umn [2]. The labour coe¢ cient is 0.73, and the capital coe¢ cient is 0.31;
both are signi�cant at 1% level.

� No evidence of variable returns to scale or non-homotheticity. That is, a
simple constant returns to scale Cobb-Douglas function seems to perform
as well as more general speci�cations.

� Among the human capital variables only age has a signi�cant impact on
productivity.



Column [3] in Table 3 reports system GMM estimates of the output translog production

function. Like for all other models previously reported, there is no evidence for non-

homotheticity or variable returns to scale. Further, in contrast to the OLS and within

models reported in Table 2 for the output specification, we can now comfortably accept the

Cobb–Douglas specification, reported in Column [4], as a result of using instrumental

variable techniques. We consequently focus on the results in Column [4]. The estimated

Table 3

System GMM estimates of production function parameters

Dependent variable: log value-addeda Dependent variable: log outputb

[1] Translog [2] Cobb–Douglas [3] Translog [4] Cobb–Douglas

Marginal effects1

Log employment 0.88 (4.20)** 0.73 (3.25)** 0.10 (0.93) 0.17 (2.37)*

Log capital 0.25 (2.49)* 0.31 (3.58)** 0.08 (1.61) 0.09 (2.06)*

Log raw materials 0.68 (12.58)** 0.68 (14.02)**

Log indirect costs 0.13 (2.35)* 0.06 (1.14)

Human capital coefficients

Education � 0.01 (0.82) � 0.003 (0.07) 0.01 (0.65) 0.006 (0.35)

Age 0.24 (2.40)* 0.26 (3.11)** 0.04 (1.42) 0.07 (2.61)**

Age2/100 � 0.38 (2.60)** � 0.41 (3.35)** � 0.08 (2.07)* � 0.11 (2.88)**

Tenure 0.04 (0.76) 0.05 (1.25) 0.01 (1.48) 0.02 (1.89)+

Diagnostics and tests

Quasi-concavity (proportion) 0.52 0.44

Monotonicity (proportion) 0.87 0.59

Homotheticity ( p-value)2 0.63 0.46

Constant returns to scale

( p-value)2
0.74 0.85 0.59 0.92

Cobb–Douglas ( p-value)2 0.66 0.37

m1 ( p-value)3 0.00 0.00 0.01 0.00

m2 ( p-value)4 1.00 0.93 0.81 0.15

Sargan–Hansen ( p-value)5 0.57 0.79 0.42 0.39

Time dummies are included in all regressions. The numbers in ( ) are t-statistics. Significance at the 1%, 5% and

10% level is indicated by *, ** and +, respectively. Hypothesis tests are based on robust, finite sample corrected

standard errors (see footnote 13) calculated using the method proposed by Windmeijer (2000).
a The instrument set for the differenced equation consists of the levels of employment, physical and human

capital, in periods t� 2 and t� 3. The instrument set for the levels equation consists of employment, physical and

human capital, differenced, in period t� 1, a constant and year dummies.
b The instrument set for the differenced equation consists of the levels of employment, raw material, indirect

costs and physical and human capital, in periods t� 2 and t� 3. The instrument set for the levels equation

consists of employment, raw material, indirect costs and physical and human capital, differenced, in period t� 1,

a constant and year dummies.
1 For the translog specification, the marginal effects is a function of the inputs, and have therefore been

evaluated at the sample means. For the Cobb–Douglas specification, the marginal effects are equal to the

estimated coefficients.
2 See Table 2.
3 Tests the null hypothesis that the differenced residuals in periods t and t� 1 are uncorrelated.
4 Tests the null hypothesis that the differenced residuals in periods t and t� 2 are uncorrelated.
5 Tests for the validity of the overidentifying restrictions.

M. Söderbom, F. Teal / Journal of Development Economics 73 (2004) 369–394380



3.5 Ine¢ ciency

� Based on the output production function in Column [4], Table 3, we predict
the �rm �xed e¤ects (�̂i).

� In Table 4 we regress the �xed e¤ects estimates on time invariant variables,
to see if we can detect any systematic variation in e¢ ciency across sectors,
ownership structures, locations and other �rm characteristics. Some dif-
ferences across sectors, but neither �rm age nor ownership are associated
with signi�cant e¢ ciency di¤erentials. The model explains only 16 per
cent of the variation in the �xed e¤ects.

� To get a feel for the �average� level of ine¢ ciency, and the dispersion of
ine¢ ciency, we compute an ine¢ ciency index using the formula

tei) exp (� (�̂max � �̂i)) ;



where �̂max is the sample maximum of the �rm e¤ects. Figure 1 shows
the distribution of this e¢ ciency index. What do we learn from this?

[Figure 1 here]





3.6 Allocative ine¢ ciency

3.6.1 Capital intensity and �rm size

To investigate the relation between capital intensity and �rm size, we consider
a partial linear model of the form

ln kit = f (lnLit) + time & sector controls + residual,

where kit is a the capital-labour ratio adjusted to take into account di¤erences
in labour quality across �rms (using the human capital data and the estimated
coe¢ cients on these variables).

� To estimate the function f(:) we use a semiparametric approach, which is
�exible. Figure 2 shows the estimated function and pointwise 95 per cent
con�dence bands, obtained through bootstrapping.



� The pattern is non-linear. The positive correlation between size and capital
intensity is strongest for �rms between ten and 90 employees, outside this
range the regression function is relatively �at and the con�dence bands
wide.

� Within the (10, 90) range, the average slope of the regression line is about
0.8, indicating that a one per cent increase in the labour force is associated
with a 0.8 per cent increase in the capital labour ratio.

[Results in Figure 2]





� Now use the predicted values of capital intensity, and calculate the implied
capital stock values for given levels of labour. This yields the expansion
path of factor combinations. We plot this in Figure 3 along with isoquants
based on a Cobb-Douglas value-added production function with a capital
coe¢ cient of 0.3 and a labour coe¢ cient of 0.7, thus very similar to the
regression reported in Column [2], Table 3.

� Recall: no evidence that the technology is non-homothetic - so it is not
di¤erences in technology which explain di¤erences in factor choice across
�rms of di¤ering size.

[Figure 3 here]





� The �gure implies that �rms with 200 employees have up to 5 times higher
relative labour to capital costs than �rms with 21 employees. These dif-
ferences in relative factor prices imply a substantial dispersion of factor
choices.

� If relative prices di¤er so much across �rms of di¤ering size - is this because
of di¤ering labour costs, di¤ering capital costs, or a combination?

� Capital costs are unobserved (basically since capital is purchased, rather
than rented).

� But labour costs are observed. So we can run a regression modeling average
wage as a function of �rm size:

lnwit = 
hit + �1 lnLit + �2 (lnLit)
2 + � t + !i + �it:



� In our preferred speci�cation (which excludes the squared size term since
insigni�cant) we obtain �̂1 = 0:15.

� Suggests that �rms of di¤ering size face di¤erent costs for a given amount
of productive labour input. The point estimate of 0.15 implies that labour
costs will rise by 40 per cent as �rms expand from small to large i.e. from
21 to 200 employees.

� This implies that most of the factor intensity di¤erential documented in
the previous sub-section is due to di¤ering capital costs! (Recall: relative
factor prices di¤ers by a factor of 5!)

� Infer the cost of capital from the formula

r = (0:3=0:7)� ŵ �
� dK=L��1 ;



where we put ^ to indicate these quantities are predicted from the models
discussed above.

� Figure 4 shows how r varies with �rm size. After an initial increase for �rms
with less than seven employees, the capital price falls sharply with size.
Micro �rms (�rms with at most �ve employees) face average capital prices
between 0.34 and 0.52, while large �rms (with more than 99 employees)
face prices between 0.09 and 0.14.

� If factor prices vary due to policy or labour market distortions, which are
removable, then substantial cost reductions are possible. To illustrate,
suppose the large �rm output were produced using small �rm factor pro-
portions - then the amount of labour would be 64 per cent higher while
the capital required would be about a third that actually used. If large
�rms faced the labour costs of small �rms our �ndings imply that their
unit costs would fall by 20-25 per cent.



3.7 Summing up

� A very simple functional form, the Cobb-Douglas, adequately represents
the production technology. The implication of the acceptance of the Cobb-
Douglas functional form is that di¤erences if factor choices over �rms of
di¤ering size is not a re�ection of di¤erences in technology.

� The measures of human capital appear not to be quantitatively very im-
portant in determining productivity.

� Large �rms facing higher relative labour costs than smaller �rms use a
much more capital intensive technology and operate with costs 20-25 per
cent higher than those which would occur if factor prices di¤erentials across
�rms of di¤ering sizes could be eliminated.



4 Agricultural Productivity and Farm Size

Reference: Lamb (2003).

� Puzzle in empirical work on developing country agriculture: the "Inverse
Productivity" (IP) relationship. Basic model:

lnYi = �+Xi� + 
 lnAi + ui;

where Y is output (or pro�ts), A is total area farmed, X is a vector of
"control variables" and u is a residual.

� The puzzle: 
 < 1, i.e. a 1% increase in land area yields a smaller than
1% increase in output (pro�ts).



� Similar relationship is observed for labour demand: labour demand rises
less quickly than area farmed.

� Why this �nding?

� Possible explanation #1: Small farmers are more e¢ cient than large farm-
ers. If this is true, total output might increase as a result of dividing up
large farms into smaller plots.

� But intuition suggests this is not correct - if anything, you would think
there are increasing returns to scale amongst farmers.



� Possible explanation #2: Small farmers have land that is of higher quality
(on average) than that used by large farmers. If this is true, land redis-
tribution from large to small landholders will not raise agricultural output
and rural incomes.

� Possible explanation #3: Market failures. For example, small-scale farmers
can�t optimally divide their time between self-employment at the farm and
wage employment. So they end up working at their own farm all the time
(over�allocate labour), driving the marginal production of own-farm labour
below the market wage rate. As a result, small farms get a lot of owner
input.

� Common theme in explanations 2-3: The IP result is not genuine. Instead,
it is caused by a speci�cation error - there is an omitted variable in the
model.



� Possible explanation #4: Poor data. Measurement errors in area.

� Purpose of this paper is to test competing explanations of the IP relation-
ship using data on Indian farms.

[Summary statistics in Table 1]



1 US $ ~= 9 Indian Rupees 1975‐85.
1 acre ~= 4,000 square meters.

• Small plots.
• Low profits.
• Low wages.

Survey panel data on rural households in India, 1975‐1985. Sample consists 
of 1,060 households drawn from 8 villages. Sample means in Table 1:



� Econometric model:

lnYit = �i +Xit� + 
 lnAit + uit:

Notice i; t subscripts on explanatory variables (re�ecting panel data). Also
notice that the intercept varies across households but is constant over time
(you see this because � has an i-subscript but no t-subscript). The author
will thus use a �xed e¤ects estimator, which you will recall is analogous
to including separate dummy variables for each households in the model.

� The author will also consider results from a random e¤ects estimator. I
will focus mostly on the �xed e¤ects results.

� [Regression results in Table 2]



• Col. (2): Coef. on log Area 
less than 1 

• Significantly different from 
1. How is this test done?

• Thus, results suggest IP.
• Now probe the data 
further to see if any of the 
alternative explanations
might be true (land quality, 
market imperfections, 
measurement errors) 



• Col. (4): Controlling for 
land quality (e.g. soil quality
– not shown in table but
included in regression), 
increases the coefficient on 
area. 

• Indicates that small farms 
use higher‐quality land, 
perhaps because high‐
quality land is subdivided
more often.

• Why this conclusion? Go 
back to formula for omitted
variable bias in the OLS 
estimator.

• But coefficient is still less 
than 1, thus IP still seems to 
hold.



• Labour demand: 
dependent variable is now
log total hours worked.

• Cols. (1)‐(2): Coefficient on 
log area less than 1 & 
signficiantly different from 
1. 

• Suggests a 1% increase in 
area leads to less than 1% 
increase in labour input. 



4.1 The inverse relationship and imperfect markets

� Taking stock: land quality explain to some extent - but not fully - the IP
relationship in pro�ts (since coe¢ cient on log area increases as a result
of controlling for land quality - make sure you understand the logic here).
Also, clear IP relationship in labour demand.

� Lamb now investigates if there is any evidence that small farmers over-
allocate labour to their own farms. This would not be optimal - marginal
product of labour is lower than the going wage rate - but would result
in a lot of output at the farm, hence high productivity. To test for this,
he adds to the model variables measuring labour market characteristics
(e.g. unemployment rates). The idea is that if unemployment is high,
small farmers will over-allocate labour to their own farms, and get high
average productivity as a result.



� Hence we expect the coe¢ cient on log area to increase as a result of
controlling for unemployment.

� However, this generalization of the model does not change the main result,
i.e. it is still the case that the coe¢ cient on log area is less than 1 and
signi�cantly di¤erent from 1 (in the �xed e¤ects speci�cations).



4.2 Measurement errors

Suppose that log area is measured with error, so that

lnAobsit = lnAtrueit + �it;

where lnAobsit is observed (measured) area, lnAtrueit is true, unobserved area,
and �it is a measurement error (assumed uncorrelated with true area) The
correct speci�cation is clearly

lnYit = �i +Xit� + 
 lnAtrueit + uit;

but unfortunately this cannot be estimated as lnAtrueit does not exist in the
data.

If we estimate

lnYit = �i +Xit� + 
 lnAobsit + eit;



it must be that the residual in this equation contains the measurement error:

eit = uit � 
�it:

This will lead to downward bias in the estimate of 
 as lnAobsit will be nega-
tively correlated with eit = uit � 
�it.

� Intuition: The correlation is negative, since a high value of �it simulta-
neously leads to a low value of eit and a high value of lnAobsit . The bias
will be more severe the more important are the measurement errors, and
in the extreme case where measurement errors are completely dominating
the data the estimated coe¢ cient 
 goes to zero, regardless of the true
value of the parameter.

� The intuition is straightforward: you can�t explain anything (i.e. you will
get a very low or zero coe¢ cient) if your explanatory variable is basically
garbage (contains little true information).



� To investigate if this is indeed what is going on in the data, the author
uses an instrumental variable approach. The proposed instruments now
need to be:

� Uncorrelated with the residual eit, i.e. uncorrelated with the measure-
ment error �it (in which case instruments are valid).

� Correlated with log area (in which the instruments are informative, or
relevant).

� Author uses as instruments dummy variables for sharecropping and dou-
ble cropping by the household. The idea is that such activities should be
associated with larger farms, and should not be related to the measurement
error in farm size.

[Results in Table 5]



Instruments informative.

Estimated coefficient now equal to 1.00. No IP!



4.3 Conclusions

� If you do not take into account land quality di¤erences across farms of dif-
fering size, and measurement errors in farm size, you will obtain a spurious
result suggesting that productivity falls with farm size.

� Once you take these mechanisms into account, it is clear that productivity
does not vary with farm size.

� Farm policies concerned with aggregate productivity: no reason to encour-
age the formation of small farms.



5 Productivity Growth Across Sectors: Agricul-
ture vs. Manufacturing

In most poor countries, the agricultural sector is dominant in terms of employ-
ment and output. The manufacturing sector, although typically much smaller
than the agricultural sector, is often perceived to be �special�:

� Leading edge of "modernization" (creates skilled jobs & technological
spillover e¤ects). Agriculture, in contrast, is often considered "stagnant"
& "traditional" (e.g. Lewis model - surplus labour due to low marginal
product of labour)

� Historically, we know that manufacturing exports has been a key factor in
the rapid development of the Asian �tigers�



Because manufacturing is "modern" and agriculture "traditional & stagnant",
productivity growth is often assumed to be higher in the manufacturing sector.
Policies often favour the manufacturing sector.

The paper by Martin and Mitra (2001) investigates empirically how the growth
in total factor productivity (TFP) - or just productivity - di¤ers between manu-
facturing and agriculture. This analysis sheds light on whether the assumption
that manufacturing is the �engine of growth�is actually correct.



5.1 Data

� Basic production function approach.

� Panel data on output and inputs in the manufacturing and agricultural
sectors over the 1967-92 period. That is, sector-level data (as distinct
from �rm-level or farm-level data).

� Manufacturing: 38 countries (23 developing countries); Agriculture: 49
countries (32 developing countries).



5.2 Estimating productivity growth rates

The authors use two speci�cations of the production function.

� The �rst speci�cation is Cobb-Douglas:

lnYt = lnA0 + r � t+ � lnLt + � lnKt + "t;

where Y is value-added, L is labour, K is physical capital, t denotes
time, A0 is initial productivity (TFP) level, "t is a residual (omitted in the
authors�exposition), and r; �; � are parameters to be estimated. Produc-
tivity at time t > 0 is equal to lnA0 + r � t, hence it follows that r is a
measure of the annual growth rate in productivity:

lnAt+1 � lnAt = lnA0 + r � (t+ 1)� [lnA0 + r � t]

lnAt+1 � lnAt = r:



The parameters lnA0 and r di¤er across countries, but �; � are assumed
to be constant across countries. The authors also assume constant returns
to scale - i.e. �+ � = 1.

� The second speci�cation is a generalization of the Cobb-Douglas model -
the Translog model:

lnYt = lnA0 + r � t+ � lnLt + � lnKt

+

(lnLt)

2

2
+ �

(lnKt)
2

2
+ � (lnL� lnK) + "t:

The interpretation of the coe¢ cient r is the same as for the Cobb-Douglas
model - i.e. as a measure of the percentage growth in productivity per year.



� Notice that the Cobb-Douglas model is a special case of the Translog
model, which results if 
 = � = � = 0.

� Model is estimated with OLS, with country dummies added (hence country
"�xed e¤ects" model).

� For manufacturing, the models are as described above. For agriculture,
land is added as a factor - so for agriculture the Cobb-Douglas model
looks like this:

lnYt = lnA0 + r � t+ � lnLt + � lnKt +  lnMt + "t;

where Mt is total arable land plus land under permanent crops.

� Results are shown in Table 1 (developing countries) and Table 2 (developed
countries).



[Table 1 & 2 here]



• Higher growth in agriculture:
•Man: 1.1 – 1.9%
• Agri: 2.3 – 2.9%

• Slower growth in developing countries
• Man: 0.6 ‐ 0.9%
• Agri: 1.8 – 2.6%

• Very low growth in low‐income
countries.

• Results from t‐tests indicate we can
reject H0: productivity growth is the 
same in both sectors.

• Results for developed countries shown
in Table 2 (you may skip).



5.3 Testing for convergence in productivity levels & growth

rates

De�ne the productivity gap between the U.S. and country i as follows:

Dit = lnARt � lnAit;

where lnARt is the productivity level in the U.S (subscript R for "Reference
country"). and lnAit is the productivity level in country i (productivity levels
are estimated separately for manufacturing & agriculture, of course). Produc-
tivity is calculated from the Translog regressions as

lnAit = lnA0 + r � t+ "t;

(the expression in their eq. 4 looks di¤erent but is equivalent).



Productivity in country i is considered to be converging towards a constant
(long-run) gap Di if � < 1 in the following equation:

Dit = ai + �Di;t�1 + �it;

where ai is a country speci�c intercept (captured by country dummies). You
should verify that, if � < 1, it must be that the long-run expected value of the
productivity gap is equal to ai= (1� �).

An important implication of convergence in this context is that all countries are
expected to have the same steady-state growth rates. Why is this true? Why
is this interesting?

Estimation results are shown in Table 5

[Table 5 here]



• The estimate of rho is <1 & 
significantly different from 1 
for both sectors (if rho = 1, 
then no convergence). 

• Implication: in the steady
state, all countries will have
the same productivity growth
rates – compare with macro
lecture.

• What about productivity
levels? Results ”T (time 
trend)”indicate that the 
productivity gap is increasing
over time in manufacturing, 
and decreasing over time in 
agriculture.



5.4 Conclusions

� Findings weaken the case for policies that discriminate against the agri-
cultural sector, in favour of the supposedly more dynamic manufacturing
sector.

� Having a large agricultural sector may even be an advantage in terms of
growth performance.



6 Firm Growth

Reference: Sleuwaegen and Goedhuys (2002).

� A better understanding of the relationships between growth and certain
�rm characteristics is important, since it can o¤er guidance as to what
type of �rms are likely to be relatively successful and good at creating jobs
in the future. Identi�cation of such �rms would clearly be informative to
policy makers.

� The relationship between �rm size and growth is of particular interest
in the poor countries, since most �rms in such countries are very small.
How realistic is it to hope that some of these �rms will grow and become
successful large �rms in the future?



� The relation between �rm age and growth is also important. For example,
if young �rms grow quickly, policy measures aimed at encouraging entry
may have signi�cant growth e¤ects in the short and medium term.

� Popular framework: the Jovanovic (1982) learning model, in which �rm
growth depends on �rm age and �rm size. In the model individual man-
agers are initially uncertain about their own abilities, but can assess their
capability by observing how they perform. Over time e¢ cient �rms grow
and survive, while ine¢ cient �rms decline and fail. This process generates
a correlation between survival rates and �rm size and age.

� In reality the growth process is complex. Sleuwaegen and Goedhuys (2002)
consider the role played by terms non-linear in size and age in the growth



regressions:

Growth = a0 + a1 log Size+ a2 [log Size]
2 + a3 logAge

+a4 [logAge]
2 + a5 log Size� logAge+ controls

� Strong evidence of a positive interaction e¤ect between age and size on
growth: the relationship between age and growth is less negative (or more
positive) for large �rms than for small �rms, and that the relationship
between size and growth is less negative (or more positive) for old �rms
than for young ones.

� To facilitate interpretation of the results, see Figure 1, which shows pre-
dicted size as a function of initial size and age, based on the estimates
reported in Sleuwaegen and Goedhuys (2002), Table 3, column 1.

[Table 3 + graph here]



(From 
Sleuwaegen and
Goedhuys, 2002)



Illustration of implied relationship between size, age and growth (based on col. 1, T3):



� Caveat: The relationship between size and growth could in fact be spurious.
The problem arises whenever there are transitory �uctuations in size or
whenever there are transitory measurement errors in observed size. The
resulting bias in the estimated relationship between initial size and growth
is negative, hence failure to address this problem can produce a picture of
the growth of small �rms that is too good. In view of this, the conclusion
drawn by Sleuwaegen and Goedhuys (2002) that the �. . . the results go
against Gibrat�s law of random growth behaviour�may be premature.
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