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1. Introduction

This and the next lecture focus on the estimation of treatment e¤ects and the evaluation of programs.

As you probably know this is an area of very active research in applied micro economics, and you often

see papers using this methodology published in top journals. To some extent, the treatment evaluation

literature uses a di¤erent language to what we are used to. In fact, much of what is done in treatment

analysis can be related to standard regression analysis. But as we shall see, not everything.

References for this lecture are as follows:

Angrist and Pischke (2009), Chapters 3.2-3.3; 5 - read carefully.

Chapter 18.1-18.4 in Wooldridge (2002) "Cross Section and Panel Data" - read carefully.

Gilligan, Daniel O. and John Hoddinott (2007). "Is There Persistence in the Impact of Emergency

Food Aid? Evidence on Consumption, Food Security and Assets in Rural Ethiopia," American Journal

of Agricultural Economics, forthcoming - basis for empirical examples and computer exercise 4.

For a short, nontechnical yet brilliant introduction to treatment e¤ects, see "Treatment E¤ects" by

Joshua Angrist, forthcoming in the New Palgrave.
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2. Concepts and quantities of interest

� A treatment e¤ect is simply the causal e¤ect �treatment�(e.g. undergoing a training programme)

on an outcome variable of interest (e.g. productivity at work).

� Typically the treatment variable is a binary (0-1) variable. Unless I say otherwise, this will be the

assumption throughout the discussion.

� The potential-outcomes framework: For each individual there is a potential outcome with

treatment, denoted y1, and another potential outcome without treatment, denoted y0. These can

thus be thought of as outcomes in alternative states of the world, and the treatment (causal) e¤ect

is the di¤erence between these two quantities: y1 � y0.

� Of course, it is impossible to measure treatment e¤ects at the individual level, as we can never

observe the full set of potential outcomes in alternative states of the world - basically, because we

don�t have access to parallel universes. Researchers therefore focus on various forms of average

treatment e¤ects.

� Following Wooldridge, I�m de�ning w as a binary treatment indicator (a dummy variable), where

w = 1 if treatment,

w = 0 if no treatment.

The outcome variables, y1 and y0, as well as the di¤erence y1�y0, are random variables that poten-

tially vary across individuals in the population. In seeking to estimate the e¤ect of treatment

on outcomes, it is therefore natural to focus on estimating the average treatment e¤ect. We

focus on two such measures:

1. The average treatment e¤ect (ATE):

ATE = E (y1 � y0)
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2. The average treatment e¤ect on the treated (ATE1):

ATE = E (y1 � y0jw = 1)

� ATE is the expected e¤ect of treatment for a randomly drawn individual from the population

� ATE1 is the expected e¤ect of treatment for a randomly drawn individual from those individuals

in the population that have undergone treatment.

In some special cases, ATE and ATE1 coincide.

� At this point it�s worth pausing for a moment, and think about what the quantities just de�ned

really mean. Notice in particular that what is being estimated here is the overall impact of a

particular program on an outcome of interest (reduced form). This may be quite di¤erent from the

impact of the treatment keeping everything else constant. Think of a structural relationship

of the form y = f(x;w), and suppose x = x (w), i.e. x depends on w: The average treatment e¤ect

is an estimate of the total e¤ect of w on y, i.e. both the direct e¤ect and the indirect e¤ect (the

one operating through w).

� So how can we estimate these treatment e¤ects? Recall that the treatment e¤ect is the di¤erence

between two potential outcomes. We have data on actual outcomes. The actual outcome is equal

to the potential outcome...

� ...with treatment for the treated individuals, i.e. we observe y1 for individuals with w = 1; and

� ...without treatment for the untreated individuals, i.e. we observe y0 for individuals with w = 0.

Thus we will not have data on both y1 and y0, which means we can�t just compute sample averages

of the di¤erence y1 � y0.

� The problem is that we don�t observe the counterfactual (the outcome that didn�t happen).

� In other words, we do not observe outcomes
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�without treatment for the treated individuals (i.e. y0 is unobserved whenever w = 1), or

� outcomes with treatment for the untreated individuals (y1 is unobserved whenever w = 0).

� In the data, the observed outcome y can be written

y = (1� w) y0 + wy1 = y0 + w (y1 � y0) :

This complicates the estimation of treatment e¤ects. How can we estimate ATE or ATE1, if this

is all the data available?
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3. Randomization: Experimental data

� Randomization: can be thought of as a process in which the outcome of a toss of a coin determines

whether an individual get treatment (wi = 1) or not (wi = 0). If treatment is randomized across

individuals, then estimation of the average treatment e¤ect is simple, despite the unobservability

problem just discussed.

� Suppose your sample consists of N observations, and your goal is to calculate E (y1) and E (y0).

Your problem is that for each individual, either y1i or y0i is unobserved. Might it still be valid to

calculate E (y1) by taking the average of the observed values of y1, and vice versa for E (y0)?

� Yes it would, since randomization ensures the potential outcomes (y1; y0) are statistically indepen-

dent of treatment status.

� The reason is that independence implies E (y1jw = 1) = E (y1jw = 0) = E (y1), and so

ATE = E (y1 � y0)

= E (y1)� E (y0)

= E (yjw = 1)� E (yjw = 0) ,

where independence allows us to go from the second to the third line. It also follows that

ATE1 = E (y1 � y0jw = 1) ;

= E (y1jw = 1)� E (y0jw = 1) ;

= E (y1)� E (y0) ;

= E (yjw = 1)� E (yjw = 0) ;

where independence allows us to go from the second to the third line, and from the third to the
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fourth line. Notice that, in this case,

ATE = ATE1:

� Thus, a randomized experiment guarantees that the di¤erence-in-means estimator is �ne (unbi-

ased and consistent). Notice that this estimator can be obtained by running the following simple

OLS regression:

yi = �0 + �1wi + ui;

where the estimate of �1 is the estimated ATE (and, by implication, ATE1).

� You see how powerful the method of randomization is. Provided you get the design of your experi-

ment right, all you need to do is to compare mean values across the two groups (w = 0; w = 1). If

done right, a pure randomized experiment is in many ways the most convincing method of evalua-

tion.

� It sounds easy, but, of course, life is never easy. Experiments have their own drawbacks:

�They are rare in economics, and often expensive to implement. �Social experiments�carried

out in the U.S. typically had very large budgets, with large teams and complex implementation.

However, quite a few randomized evaluations have recently been conducted in developing

countries on fairly small budgets.

�They may not be amenable to extrapolation. That is, there may be questionmarks as to the

external validity of the results of a particular experiment. The main reasons are:

� it may be very hard to replicate all components of the program elsewhere

� the results may be speci�c to the sample (you might argue this is a general problem in

empirical economics - that may well be true, but typically experiments are conducted in

relatively small regions, which possibly exacerbates the problem);

� the results may be speci�c to the program (would a slightly di¤erent program have similar

e¤ects?).
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�There are lots of practical problems related to the implementation of experiments. Getting

the design of the experiment right really is the big challenge, and as you can imagine much

can go wrong in the �eld. Suppose you start to give free school meals randomly in 50% of

the schools in a region where previously school meals were not free. One year later you plan

to turn up and compare pupil performance in treated and nontreated schools. But how can

you be sure parents whose kids are in nontreated schools have not reacted to your reform by

changing schools? Or could treatment a¤ect the decision as to when someone should leave

school? The basic point is that you typically need time between initiating the treatment and

measuring the outcome, and much can go wrong in the meantime. There may be ethical issues:

why give some people treatment and not others? How justify not helping those that need it

the most?

� For these reasons, most economic research still uses non-experimental (observational) data.

� When we have non-experimental data, we must assume that individuals at least partly determine

whether they receive treatment. This may lead to problems with the simple di¤erence-in-means

estimator if the individual�s decision to get treatment depends on the bene�ts of treatment. In such

a case, we would say there is self-selection of treatment. Addressing this problem is largely what

the literature on treatment e¤ect estimation based on non-experimental data is about. Notice that

this is precisely the problem solved - in principle - by randomization.
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4. Non-experimental data

We now focus on the case where individuals potentially self-select into treatment. This breaks indepen-

dence between (y1; y0) and w, and so the simple di¤erence-in-means estimator discussed in the previous

section does not estimate the average treatment e¤ects consistently. Actually, we can interpret this

problem as being posed by omitted variables.

� To see this, suppose your task is to evaluate the e¤ect of a job training program on earnings. You

have a random sample of workers, with data on earnings and whether the individuals have received

training (the treatment).

� It would seem plausible that people self-select (or get self-selected by their boss) into training,

depending on certain individual characteristics. It may be that people with a high level of education

tend to select training more frequently than people with little education. In addition, we strongly

suspect that (y1; y0) are positively correlated with education.

� Thus, (y1; y0) and w are no longer independent - they are both a¤ected by a common factor, namely

education - and any attempt to use the di¤erence-in-means estimator will then result in bias of the

estimated average treatment e¤ect.

� To see how this links to omitted variables bias, recall that using the di¤erence-in-means estimator

is equivalent to estimating the regression

yi = �0 + �1wi + ui:

Since in the current example education is in the residual and assumed positively correlated with

training, the OLS estimate of �1 will be upward biased.
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4.1. Selection on observables

In empirical economics, we worry about problems posed by omitted variables all the time. Of course, the

simplest solution to this problem is to control for the role played by the omitted variables in estimation.

Provided all variables that need to be controlled for can be controlled for, this solves the omitted variables

problem completely, and we can estimate the treatment e¤ect consistently. In the treatment literature

this amounts to assuming ignorability of treatment (given x):

� Ignorability of treatment: Conditional on x, w and (y1; y0) are independent. [Wooldridge,

Assumption ATE.1]. In words: If we are looking at individuals with the same characteristics x, then

(y1; y0) and w are independent. Angrist and Pischke (2009) call this conditional independence

assumption - CIA.

� Conditional mean independence [Wooldridge, Assumption ATE.1�]:

E (y0jx;w) = E (y0jx) ;

E (y1jx;w) = E (y1jx)

In words: Comparing two individuals with the same x, the expected outcome under treatment is

the same for treated individuals as for untreated individuals. This is often described as selection

on observables.

� Clearly ignorability of treatment implies conditional mean independence (yes?).

� Notice that the ATE conditional on x, denoted ATE (x), coincides with the ATE1 conditional on

x; denoted ATE1 (x):

ATE1 (x) = E (y1jx;w = 1)� E (y0jx;w = 1)

= E (y1jx)� E (y0jx)

= ATE (x) :
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So you see how these average treatment e¤ects are written simply as the di¤erence between the

expected value of y1 and y0, conditional on x:

� We haven�t said anything at this point about a �model�or the functional form relationship between

x and the (conditional) expected values of y1 and y0. Remaining agnostic about functional form,

we can write

E (y1jx) = r1 (x) ;

E (y0jx) = r0 (x) ;

where r1 (:) and r0 (:) are functions. Assuming that r1 and r0 can be estimated, we can obtain a

consistent estimator of ATE simply as follows:

AT̂E =
1

N

NX
i=1

[r̂1 (xi)� r̂0 (xi)] ;

where r̂1 and r̂0 are the estimates of r1 and r0.

� Notice that AT̂E is the estimated unconditional average treatment e¤ect (because we average

across individuals with di¤erent values of x in the sample).

� We said above that the conditional average treatment e¤ect, ATE (x), is equal to the conditional

average treatment e¤ect on the treated, ATE1 (x). However, in general, the unconditional average

treatment e¤ect (ATE) is not equal to the unconditional average treatment e¤ect on the treated

(ATE1). Subtle, isn�t it? To estimate the latter we modify the above formula and simply average

across the j = 1; 2; :::; N1 treated individuals only

AT̂E1 =
1

N1

N1X
j=1

[r̂1 (xj)� r̂0 (xj)] ;
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or, using Wooldridge�s formulation,

AT̂E1 =

 
NX
i=1

wi

!�1 NX
i=1

wi [r̂1 (xi)� r̂0 (xi)] :

� Of course, in order to calculate any of these quantities, we need to be a little bit more speci�c about

r1 and r0.

[Now turn to Section 1 in the appendix.]

� Suppose the observation with id=6 had not been included in the "data" just examined, so that

there were no observations in the data for which (w = 1; x = 1). What would be the implication of

that? Think of a real example where something similar might happen.

� In the example above the treatment e¤ects were calculated by comparing individuals for whom the

values of x are identical. This is known as exact matching on observables.

� Typically in applied work, however, it is either impractical or impossible to divide up the data into

(w; x)-speci�c cells (as in that example), because there are usually many x-variables and/or some

or all of these may be continuous variables. Thus, there are typically no nontreated individuals in

the data that have exactly the same x-values as a given treated individual. This makes it more

di¢ cult to estimate the counterfactuals.

� The two main ways of controlling for observable variables in practice are estimation by regression

and estimation by inexact matching. We discuss these next. In terms of data availability, the

premise of the discussion is initially that we have cross-section data. Later on, we discuss how

longitudinal (panel) data o¤er some important advantages compared to cross-section data. Some

authors, e.g. Richard Blundell, have argued that results based on panel data are more robust than

results based on cross-section data.
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4.1.1. Estimation by regression

� To see how regression techniques can be used in this context, consider the following two equations:

y0 = �0 + v0;

y1 = �1 + v1;

where E (v0) = E (v1) = 0. These two equations describe the outcomes in the event of non-

treatment and treatment, respectively, and can be re-written as a switching regression:

y = w (�1 + v1) + (1� w) (�0 + v0) ;

y = �0 + (�1 � �0)w + v0 + w (v1 � v0) : (4.1)

� If v0 and v1 are independent of x, we have

ATE = (�1 � �0) ;

which is the regression coe¢ cient on w in (4.1). In this case, we could estimate ATE simply by

running a regression where y is the dependent variable and w is the only explanatory variable. As

already discussed, this is how to proceed under randomization.

� Suppose now v0 and v1 are functions of x:

v0 = v0 (x) ;

v1 = v1 (x) ;

and consider two assumptions:

1. E (v1jx) = E (v0jx), [Wooldridge, Proposition 18.1]
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2. E (y1jx;w) = E (y1jx) and E (y0jx;w) = E (y0jx).

The second of these is conditional mean independence, as we have already seen. The �rst assumption,

E (v1jx) = E (v0jx) ; implies that variation in x alters y0 and y1 in exactly the same way. For example,

if our outcome of interest is earnings and x is experience, then an additional year of experience leads to

the same change in earnings with treatment (perhaps training) as without.

� Under assumptions (1) and (2), we can show that

ATE = ATE1;

and

E (yjw; x) = �0 + �w + g0 (x) ; (4.2)

where � = (�1 � �0) = ATE, and g0 (x) = E (v1jx) = E (v0jx). A proof of this is provided in

Section A1 in the appendix.

� The implication is that, once we have decided on a suitable functional form for g0 (x), we can

estimate the ATE by OLS. For example, if g0 (x) = �0 + x�0, the regression is

y = (�0 + �0) + �w + x�0 + "; (4.3)

where x�0 can be interpreted as a control for self-selection into treatment.

� If we relax assumption (1), but continue to make assumption (2) and use linear speci�cations for

g0 and g1:

E (v1jx) = g1 (x) = �1 + x�1;

E (v0jx) = g0 (x) = �0 + x�0;

13



we can show that

E (yjw; x) = �0 + �w + x�0 + w (x� �x) �;

where � = (�1 � �0) and � = �1 � �0. Again, I provide a proof in the appendix, Section A1. The

latter equation can be estimated by means of OLS:

y = �0 + �w + x�0 + w (x� �x) � + ";

in which case

AT̂E = �̂;

AT̂E1 = �̂+

 
NX
i=1

wi

!�1 NX
i=1

wi (xi � �x) �̂
!
:

� Notice that the regression in this case - where only assumption (2) is imposed - is more general

than the one estimated when both assumptions (1) and (2) are imposed. The di¤erence is that we

now add interaction terms between w and (x� �x) on the right-hand side of the estimated equation.

Notice also that, in general, ATE 6= ATE1. So you see how equality between ATE and ATE1

hinges on assumption (1).
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4.1.2. Estimation by matching

� Estimation based on the matching involves matching treated and untreated individuals based on

their observable characteristics x, and comparing how the outcome di¤ers depending on treatment.

As we have seen, exact matching involves comparing individuals for whom the values of x are

identical. This estimator is rarely an option in practice. Why?

� With continuous variables in x, and/or many explanatory variables, we resort to inexact matching

- instead of requiring the individuals across whom we compare outcomes to have identical values of

x, we now require them to have similar values of x. In this section we discuss

� how (inexact) matching works

� how it is conceptually di¤erent from regression methods

�what are the advantages and disadvantages, compared to other techniques

� When we have many x-variables, it will be di¢ cult to match (even inexactly) on all of these

simultaneously. Fortunately, there is a way around that, by matching on the propensity score

instead. The reason matching on the propensity score is more attractive than matching on k di¤erent

x-variables, is that the propensity score is a single (estimated) "variable" for each individual.

The propensity score Consider modelling the likelihood of being treated by means of a binary

choice model (e.g. logit or probit):

Pr (wi = 1jx) = G (x�) � p (x) :

In the treatment literature, the function p (x) is known as the propensity score. Wooldridge shows

that ATE and ATE1 can be written in terms of the propensity score (pp.615-617). Whilst interesting,

the most useful property of the propensity score is probably in the context of estimating by matching,

where the idea is to match individuals with similar propensity scores. A good discussion is provided in

Angrist and Pischke, Chapter 3.3.2.
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� The Propensity Score Theorem: Suppose ignorability of treatment holds, so that conditional on

x, w and (y1; y0) are independent. Then it must be that, conditional on the propensity score p (x),

w and (y1; y0) are independent. See Angrist & Pischke pp. 80-81 for a proof (it�s pretty trivial).

� This theorem says that you need only control for the probability of treatment itself.

� Matching by the propensity score can be thought of as follows. Suppose we choose a propensity

score p (x) at random, and suppose we select two individuals with the same propensity score, where

the �rst individual receives treatment and the second does not. The expected di¤erence in the

observed outcomes for these two individuals is

E (yjw = 1; p (x))� E (yjw = 0; p (x))

= E (y1 � y0jp (x)) ;

which is the ATE conditional on the propensity score, ATE (x).

� Before we can do anything with the propensity scores, they need to be estimated. This is typically

done by means of a logit or probit. After estimation (in Stata), the propensity scores can be obtained

by typing predict propscore, p. In fact, we don�t even have to do this - the Stata command pscore

does this for us, as well as some basic analysis of its properties. We will have a look at this in the

computer exercise.

� The basic idea behind the propensity score matching estimator is quite appealing. To estimate the

counterfactual y0i (i.e. the outcome that individual i; who was treated, would have recorded had

s/he not been treated), use one or several observations in the (nontreated) control group that are

similar to individual i, in terms of the propensity score.

� While this may sound relatively straightforward, there are a number of both conceptual and practical

issues to keep in mind when implementing a propensity score matching estimator. We now turn to

these.
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Conditional mean independence.

� First of all, we know the assumption of conditional mean independence must hold (see above),

otherwise we cannot interpret our estimates as average treatment e¤ects. The practical implication

of that is that you need a complete set of variables determining selection into treatment. That

is, if your dataset does not contain the relevant variables determining selection, then your binary

choice model (the �rst stage) will not generate useful propensity scores in this context, essentially

because the propensity scores do not control fully for selection.

� Notice that, under pure randomization, no variable can explain treatment, and so in this case the

pseudo-R-squared should be very close to zero.

� Of course, it�s hard to know a priori what the right set of explanatory variables in the �rst stage are.

Should draw on economic theory. The more you know about the process determining treatment, the

more convincing is this particular identi�cation strategy. Angrist & Pischke cite evidence suggesting

that a logit model with a few polynomial terms in continuous covariates works well in practice, but

note that some experimentation will be required in practice.

Common support.

� Now suppose that we have estimated the propensity scores by means of logit or probit. Remember

that one of the cornerstones of matching estimators is that treated and nontreated individuals need

to be comparable.1

� Suppose we �nd that there are a lot of treated observations with higher (lower) propensity scores

than the maximum (minimum) propensity score in the control group. How do we match these

treated observations? Because there are no observations in the control group that are similar to

1This is sometimes investigated formally by means of a balancing test (e.g. see the computer exercise, especially the
results given by the pscore command). Essentially, for individuals with the same propensity scores, assignment to treatment
should be random and not depend on the x characteristics. In other words, for a group of �similar�individuals (in terms of
their propensity scores) there should be no statistically signi�cant di¤erence in, say, the mean values of the x vector when
we compare treated and nontreated observations. This can be tested by means of simple t-tests (see the pscore output,
using the detail option).
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these, matching will not be possible (extrapolation is not thought an option). Consequently all

these treated observations that fall outside the common support region get dropped from the

analysis.

� Figure 1 in Section 2 in the handout illustrates this, using the Ethiopian food aid data in Gilligan

and Hoddinott. and focussing on the estimates reported in Table 3, column 1 in the paper (total

consumption, food-for-work treatment). In this particular case, we only drop 31 out of 630 obser-

vations. Of course, in a di¤erent application the number of dropped treated observations may be

much larger, which may lead to estimation (small-sample) problems.

� Also, notice that a conceptual issue arises here: we can never hope to estimate treatment e¤ects

on the treated outside the group of observations for which there is common support. Hence, the

estimated e¤ects should be interpreted as valid only for the sub-population of treated individuals

for which there is support in the control group.

Finding the match and estimating the treatment e¤ect If we are satis�ed the propensity score is

a good basis for matching nontreated and treated individuals, we are now ready to estimate the average

treatment e¤ect. The general formula for the matching ATE1 estimator is

ATEM1 =
1

NT

X
i2fw=1g

0@y1;i � X
j2fw=0g

� (i; j) y0;j

1A ;
where fw = 1g is the set of treated individuals, fw = 0g is the set of nontreated individuals (the control

group), and � (i; j) is a weight. Notice that
P

j2fw=0g � (i; j) y0;j is interpretable as the counterfactual

for individual i, i.e. his or her outcome had s/he not been treated. This counterfactual is thus calculated

as a weighted average of outcomes in the control group.

The issue now is how to calculate the weight. There are several possibilities.

� The simplest one is nearest-neighbour matching. This involves �nding, for each treated individ-

ual in the data, the untreated observation with the most similar propensity score. That observation
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is then given a weight equal to one, and all other observations get zero weights. Once the data have

been set up accordingly, one would then use the above general formula for the matching ATE1.

� Another method - which is the one used by Gilligan and Hoddinott - is kernel matching. In this

case

� (i; j) =
K
�
p (x)j � p (x)i

�
PNC;i

j=1 K
�
p (x)j � p (x)i

� ;
where K is a kernel function.

� A kernel function is an important tool in nonparametric and semiparametric analysis. K is a

symmetric density function which has its maximum when its argument is zero, and decreases as

the absolute argument of K increases. In other words, if p (x)j = p (x)i in the formula above, then

the value of K is relatively high, whereas if p (x)j is very di¤erent from p (x)i then K will be close

to, or equal to, zero. You see how this gives most weight to observations in the control group for

which the propensity scores are close to that of the treated individual i. If you want to learn more

about kernel functions, I warmly recommend the book by Adonis Yatchew (2003), Semiparametric

Regression for the Applied Econometrician, Cambridge University Press.

� To better understand how kernel matching works, now focus on the calculation of the counterfactual

for the ith treated individual. By de�nition, the treatment e¤ect for individual i is

y1;i �
X

j2fw=0g

� (i; j) y0;j ;

where yii is observed in the data. The snag is that we need to compute the counterfactual of

individual i, namely y0;i. This is calculated as

X
j2fw=0g

� (i; j) y0;j :

Section 3 in the handout provides details on how this works, using the Hoddinott-Gilligan food aid

data from Ethiopia.
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� Hence the kernel matching estimator of the average treatment e¤ect for the treated is expressed as

ATEM1 =
1

NT

X
i2fw=1g

(y1;i � �) ;

� =
X

j2fw=0g

K
�
p (x)j � p (x)i

�
PNC;i

j=1 K
�
p (x)j � p (x)i

�y0;j
see also equation (5) in Gilligan and Hoddinott.

� Other matching methods include radius matching and strati�cation, but I leave it to you to follow

up on the details for these methods, if you are interested.

� Somewhat disturbingly, di¤erent matching methods can give rather di¤erent results, especially if

the sample size is small. For example, in Table 3, column 1, Gilligan and Hoddinott (2007) reports

an estimate of ATE1 equal to 0.215, which is signi�cant at the 10% level. This estimate is based

on Kernel weights. If we use a nearest neighbour approach, this estimate changes to 0.301 (still

signi�cant 10% level). There is, alas, little formal guidance as to which method to use.
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Estimating standard errors using bootstrapping.

� Once we have calculated the average treatment e¤ects of interest, we want estimates of the associated

standard errors in order to do inference (e.g. we want to know if the estimated average treatment

e¤ect is signi�cantly di¤erent from zero or not).

� In the second stage, however, the standard errors are typically computed assuming that the propen-

sity score is not measured with sampling error (this is the case with Stata�s psmatch2). Recall that

the propensity score was estimated by means of a binary choice model, and so each recorded value

of the propensity score is just an estimate of the score. That is, while the recorded propensity

score for individual i may be 0.343, this will only be the true value with certainty if the parameter

estimates in the �rst stage are in fact equal to the true values with certainty (in other words, that

the standard errors in stage 1 are very close to zero). Of course, this will not generally be true,

because there is sampling error in the �rst stage. The true propensity score for individual i may be

higher or lower than 0.343. The standard errors in the second stage need to take into account the

fact that the propensity scores are estimated with some degree of uncertainty. One popular and

reasonably simple way of doing this is by means of bootstrapping (more on this in the computer

exercise).

Very brie�y, the bootstrapping process for the propensity score matching estimator is as follows:

1. Draw a new sample with replacement from the existing sample. Some individuals in the original

sample will be included several times in this new sample, others once, others not at all.

2. Based on the new sample, estimate the binary choice model and the propensity scores. Notice

that these estimates will be slightly di¤erent from those based on the original sample. Indeed, this

re�ects the e¤ect of sampling error.

3. Estimate the average treatment e¤ect in the second stage. Store this value.

Repeat this process, say, 100 times. You now have 100 �estimates�of the average treatment e¤ect. Now
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calculate the standard deviation based on those numbers. That standard deviation is your bootstrapped

standard error.

The bootstrapping approach is very general and very useful whenever it is hard to calculate standard

errors using analytical formulae.

22



4.1.3. Regression or matching?

� The regression approach is easy to implement and interpret.

�But regressions happily extrapolate between observations in the data, and so ignore the concept

of common support. The idea that you need to compare the outcomes of two individuals with

similar characteristics, except one was treated and the other wasn�t, is not central to the

regression approach. Suppose we write the regression as

yi =  + �wi + �xi + "i:

You might say � is being estimated �controlling for x�, but it may be that most high values of

x are associated with w = 1, and most low values of x are associated with w = 0. Suppose

we want to calculate the (conditional) treatment e¤ect E (y1i � y0ijxi is �high�). For treated

observations, we observe y1i in the data, but need the counterfactual y0i. This counterfactual

is thus the hypothetical value of the outcome variable under a) nontreatment; and b) a high

value of x. The problem is that are very few observations in the control group with x high, and

so the expected counterfactual E (y0ijxi is �high�) is mostly based on combining observations

on outcomes for which fw = 1; x highg and observations on outcomes for which fw = 0; x

lowg. But whether this gives a good estimate of E (y0ijxi is �high�) is uncertain, and hinges

on the extrapolation not being misleading. And, as you know, relying on extrapolation not

being misleading is always awkward.

�Regressions also impose a functional form relationship between treatment and outcomes, be-

cause we need to write down the precise form of the speci�cation in order to estimate the

parameters by regression. But functional form assumptions are often arbitrary and can lead

to misleading results.

� The matching estimator, in contrast to the regression approach, estimates treatment e¤ects using

only observations in the region of common support. There is thus no extrapolation. Furthermore,
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there are no functional form assumptions in the second stage, which is attractive.

�But we can never hope to estimate treatment e¤ects on the treated outside the region of

common support.

�At least in small samples, it is often the case that estimated treatment e¤ects change quite

a lot when we change the matching method (e.g. Hoddinott & Gilligan, kernel matching vs.

nearest neighbor matching).

�Two-stage procedure means the standard errors in the second stage are unreliable. So more

work is required - bootstrapping is often used.

� Moreover, as noted by Hahn (1998), cited in Angrist-Pischke (2009), the asymptotic standard

errors associated with propensity score matching estimator will be higher than those associated

with an estimator matching on any covariate that explains outcomes (regardless of it turns up in

the propensity score or not). Angrist and Hahn (2004), also cited in Angrist-Pischke, note that

Hahn�s argument is less compelling in small samples.
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4.2. Selection on unobservables

� We have concentrated on calculating average treatment e¤ects when there is selection on observ-

ables. When there is selection on unobservables, however, the methods that we have reviewed will

not yield consistent estimates of average treatment e¤ects. The reason, essentially, is that the as-

sumption of ignorability of treatment no longer holds: conditional on x, w and (y1; y0) are no longer

independent, because there is some unobserved term that a¤ects both selection into treatment and

the potential outcomes.

� In the case where the relevant unobserved variable is time invariant, we may be able to use longitu-

dinal (panel) data and remove the unobserved term by di¤erencing. The most common estimator

in this situation is known as the Di¤erence-in-Di¤erences estimator.

� Alternatively, we may be able to use instrumental variables to estimate the average treatment

e¤ect(s) consistently. In the context of the regression approach, this can be done using a standard

2SLS estimator, provided valid and informative instruments exist. We discuss this next time.

4.2.1. Di¤erence-in-Di¤erences

� Reference: Angrist-Pischke, Chapter 5.

� If we have data from two (or more) periods per individual, one possible way around the problem

posed by selection on unobservables is to investigate if changes in the outcome variable over time

are systematically related to treatment.

� Suppose treatment occurs between the �rst and the second time period for which we have data.

For example, suppose our dataset contains information on individuals that have received training

between time periods 1 and 2, and suppose we have data on their earnings in periods 1 and 2.

Suppose the dataset also contains information on a control group of individuals, that are observed

over the same time periods, but who did not receive any treatment.
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� The di¤erence-in-di¤erences estimator, in its simplest form, is thus de�ned as the di¤erence in the

change in average earnings for the treatment group and the control group:

ATE1 =
�
�yTa � �yTb

�
�
�
�yUa � �yUb

�
;

where

�yUa = average earnings for nontreated after treatment

�yUb = average earnings for nontreated before treatment.

� What about selection into treatment? Consider the following equations:

yUit = �i + �t + "it (no treatment)

yTit = yUit + �; (treatment)

for t = a; b (after and before), where �i is an individual-speci�c, possibly unobserved, time

invariant �xed e¤ect (thus a source of heterogeneity across individuals in observed outcomes - you

could think of this as xi), �t is a dummy variable equal to 1 in the time period after treatment

and zero in the period before treatment (�a = 1; �b = 0), "it is a zero-mean residual, and � is the

treatment e¤ect (for everyone, as well as for the treated).

� Provided "it is uncorrelated with treatment status, it follows that

�
�yTa � �yTb

�
= �+ �a;�

�yUa � �yUb
�
= �a;

thus � is the treatment e¤ect:

ATE1 = �:
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Notice that even if �i is correlated with treatment, this would not lead to bias. And notice also that

�i may be a continuous variable, or even a large set of time invariant variables (which would make

exact matching infeasible), and yet we can identify the treatment e¤ect simply by di¤erencing the

data. In e¤ect, we are exploiting the time dimension of the data to de�ne the counterfactual.

� But also notice that we require the source of �selection bias�to be constant over time - otherwise the

assumption of ignorability of treatment does not hold. If "it - which is time varying - is correlated

with treatment, then the above DiD estimate of the treatment e¤ect will be biased. In such a case

we need to do more work.

� See section 4 in the appendix for some illustrations.

� To see this, return to the DiD estimator:

yUit = �i + �t + "it (no treatment),

yTit = yUit + �; (treatment),

hence

yit = wit
�
yUit + �

�
+ (1� wit) yUit ;

yit = �i + �wit + �t + "it;

and so, in di¤erences,

�yit = ��wit +��t +�"it;

which becomes

�yit = �wit + �t +�"it;

if there are only two time periods (before and after), so that �a = 1 and �b = 0, and treatment

happens after time b but before time a.
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� As already noted, heterogeneity in the form of individual �xed e¤ects will not bias our estimate of

�. But non-zero correlation between �"it and treatment will bias the results.

� To counter this, we can add observable variables as controls to the speci�cation. Of course, this

set of control variables needs to fully control for selection into treatment, otherwise ignorability of

treatment does not hold, in which case the estimates will be biased. We will revisit this issue in the

computer exercise.

� Alternatively, we can combine DiD with matching. Recall the Kernel matching estimator in levels:

ATEM1 =
1

NT

X
i2fw=1g

(y1;i � �) ;

� =
X

j2fw=0g

K
�
p (x)j � p (x)i

�
PNC;i

j=1 K
�
p (x)j � p (x)i

�y0;j
We can take this one step further and write down the propensity score di¤erence-in-di¤erences

estimator as follows:

ATEDIDM1 =
1

NT

X
i2fw=1g

�
(y1it � y1i;t�1)� ~�

�
;

where

~� =
X

j2fw=0g

K
�
p (x)j � p (x)i

�
PNC;i

j=1 K
�
p (x)j � p (x)i

� (y0it � y0i;t�1)
This is what Gilligan and Hoddinott (2007) are using, and we will see how this estimator works in

the computer exercise.
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Appendix 1
A1. Proofs related to the regression approach

Consider

1. E (v1jx) = E (v0jx),

2. E (y1jx;w) = E (y1jx) and E (y0jx;w) = E (y0jx).

a) Under Assumptions (1) and (2) (page 11), it follows that

� ATE = ATE1;

� E (yjw; x) = �0 + �w + g0 (x) :

Proof. The starting point is the switching regression

y = �0 + (�1 � �0)w + v0 + w (v1 � v0) :

We know that ATE = (�1 � �0). To prove that ATE = ATE1; notice that

E (y1jx;w) = �1 + E (v1jx;w) ;

E (y1jx) = �1 + E (v1jx) ;

and E (y1jx;w) = E (y1jx) by assumption (2). Along similar lines,

E (y0jx;w) = �0 + E (v0jx;w) ;

E (y0jx) = �0 + E (v0jx) ;
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and E (y0jx;w) = E (y0jx) by assumption (2). We therefore have

E (y1jx;w)� E (y0jx;w) = �1 + E (v1jx)� �0 � E (v0jx)

E (y1jx;w)� E (y0jx;w) = �1 � �0;

by assumption (1). The right-hand side of the last equation is independent of x, hence we can write

E (y1jx;w)� E (y0jx;w) = E (y1jw)� E (y0jw) ;

where the right-hand side is the ATE1 by de�nition. It follows immediately that ATE1 = �1��0 = ATE:

This concludes the �rst part of the proof.

To show that E (yjw; x) = �0 + �w + g0 (x), start from

y = �0 + (�1 � �0)w + v0 + w (v1 � v0)

and take expectations

E (yjw; x) = �0 + (�1 � �0)w + E (v0jw; x) + w (E (v1jw; x)� E (v0jw; x))

= �0 + (�1 � �0)w + E (v0jx) + w (E (v1jx)� E (v0jx))

= �0 + �0 + (�1 � �0)w + g0 (x) ;

where �0 + g0 (x) = E (v1jx) = E (v0jx). This concludes the second part of the proof.
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b) Under Assumption (2) (page 11), it follows that

� ATE 6= ATE1;

� E (yjw; x) = �0 + �w + w [g1 (x)� g0 (x)] :

Proof. In the previous proof it was shown that

E (y1jx;w)� E (y0jx;w) = �1 + E (v1jx)� �0 � E (v0jx) :

Now, however, E (v1jx) = E (v0jx) is not imposed, and so the right-hand side is not independent of x.

Therefore, we do not obtain ATE = ATE1.

Further, use the result derived above that

E (yjw; x) = �0 + (�1 � �0)w + E (v0jx) + w (E (v1jx)� E (v0jx)) ;

and de�ne

E (v1jx) = �1 + g1 (x) ;

E (v0jx) = �0 + g0 (x) ;

so that

E (yjw; x) = �0 + (�1 � �0)w + g0 (x) + w (g1 (x) + �1 � g0 (x)� �0) :

Use a linear speci�cation for g0; g1:

g1 (x) = �1 + x�1;

g0 (x) = �0 + x�0:
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Because the unconditional expectation of v1 and v0 is zero, we have

E (v1) = ExE (v1jx) = �1 + �x�1 = 0;

E (v0) = ExE (v0jx) = �0 + �x�0 = 0;

thus

�1 = ��x�1;

�0 = ��x�0:

Now it follows that

E (yjw; x) = �0 + (�1 � �0)w + x�0 + w (x�1 � �x�1 � x�0 � �x�0) ;

or

E (yjw; x) = �0 + (�1 � �0)w + x�0 + w (x� �x) (�1 � �0) ;

or, with a more tidy notation,

E (yjw; x) = �0 + �w + x�0 + w (x� �x) �:
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PhD Programme: Applied Econometrics 
Department of Economics, University of Gothenburg 
Appendix 2: Lecture 11 
Måns Söderbom 
 
Treatment Evaluation 
 
1. Exact matching: A simple example 
 
Suppose your dataset looks like this: 
 

id y w x 
1 4 0 0 
2 6 1 0 
3 5 0 0 
4 8 1 0 
5 2 0 1 
6 5 1 1 
7 2 0 1 

 

How would you estimate the ATE and the ATE1? The formula for ATE is as follows 
 

( ) ( )( )∑
=

−=
N

i
ii xrxr

N
ATE

1
01

1 , 

 
where  
 

( ) ( )xrwxyE 11 1,| ==  
( ) ( )xrwxyE 00 0,| == . 

 
The estimated ATE is written 
 

( ) ( )( )∑
=

−=
N

i
ii xrxr

N
ETA

1
01 ˆˆ1ˆ , 

 
where the ^ indicate that the associated quantities are estimated. All we need to do, then, 
is  

1) estimate the functions 1r  and 0r ;  
2) plug in the actual values of x into these estimated functions, for each 

individual i in the data, and obtain N different terms ( ) ( )( )ii xrxr 01 ˆˆ − ; 
3) calculate the sample average of the quantities computed in (2). 

 
In this particular example, x can take only two values, 0 or 1. In this case there are only 
four cells in the data - i.e. there are only four different combinations of {x,w}. Hence we 
need to estimate only four quantities: ( )01r , ( )00r , ( )11r  and ( )10r . With these data: 
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 ( ) 72/)86(01̂ =+=r  

( ) 5.42/)54(00̂ =+=r  
( ) 51/511̂ ==r  
( ) 22/)22(10̂ =+=r  

 
This is quite neat in the sense that none of these predications are obtained by 
extrapolation or interpolation in the data: only observations where {w,x} are exactly as 
conditioned in the expectation are used to estimate the latter. That is, to calculate ( )01r , 
we only use observations for which {w=1, x=0}. The beauty of this is that we don’t have 
to specify a functional form relationship between the expected value of y and {w,x}.  
 
We can now add three columns to the data above, showing the estimated functions 1r  and 

0r , given x, and the difference ( ) ( )( )ii xrxr 01 ˆˆ − : 
 

id y w x ( )ixr1̂  ( )ixr0̂  ( ) ( )ii xrxr 01 ˆˆ −  

1 4 0 0 7 4.5 2.5 
2 6 1 0 7 4.5 2.5 
3 5 0 0 7 4.5 2.5 
4 8 1 0 7 4.5 2.5 
5 2 0 1 5 2 3 
6 5 1 1 5 2 3 
7 2 0 1 5 2 3 

 
And now we can estimate the ATE simply by calculating the average of the numbers in 
the last column: 
 
 7143.2ˆ =ETA  
 
To get an estimate of the average treatment effect for the treated, we use the following 
formula: 
 

( ) ( )( )
1

11
011

−

==








−= ∑∑
N

i
i

N

i
iii wxrxrwATE  

 
which essentially means discarding all non-treated observations when computing the 
average: 
 
 ( )( ) 6667.2335.25.2 1

1 =++= −ATE . 
 
Finally, let’s illustrate how this links to the regression approach. Because x takes only 
two values, there are only four categories - as defined by the values {w, x} - of 



 3 

observations in the data. Therefore, the following regression is completely unrestrictive 
in terms of the functional form relationship between {w, x} and the outcome variable y: 
 
 ( ) iiiiii xwxwy εββββ +⋅+++= 3210  
 
Notice that  
 
 ( ) 101 0 ββ +=r  

( ) 00 0 β=r  
( ) 32101 1 ββββ +++=r  
( ) 200 1 ββ +=r  

 
If I estimate this regression using the data above I obtain the following results: 
 
      Source |       SS       df       MS              Number of obs =       7 
-------------+------------------------------           F(  3,     3) =   10.09 
       Model |  25.2142857     3   8.4047619           Prob > F      =  0.0447 
    Residual |         2.5     3  .833333333           R-squared     =  0.9098 
-------------+------------------------------           Adj R-squared =  0.8196 
       Total |  27.7142857     6  4.61904762           Root MSE      =  .91287 
 
------------------------------------------------------------------------------ 
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           w |        2.5   .9128709     2.74   0.071    -.4051627    5.405163 
           x |       -2.5   .9128709    -2.74   0.071    -5.405163    .4051627 
          wx |         .5   1.443376     0.35   0.752    -4.093466    5.093466 
       _cons |        4.5   .6454972     6.97   0.006      2.44574     6.55426 
------------------------------------------------------------------------------ 
 

(abstract from everything here except the point estimates). You can now confirm that this 
gives exactly the same estimates of ATE and ATE1 as with the previous approach. 
 
In cases where there are many x-variables, and/or the x-variable(s) can take many 
different values, it will be impractical to calculate the expected values of y for each 
possible combination of {w,x} in the data. In such cases we can use regression instead. 
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2. Propensity score matching: Food aid in Ethiopia 
 
 
Table 1 
 
> probit pwhh $PW_Xvars if psmpwsamp==1 & dlrconsae56~=.; 
 
Probit regression                                 Number of obs   =        630 
                                                  LR chi2(33)     =     176.20 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -326.45198                       Pseudo R2       =     0.2125 
 
------------------------------------------------------------------------------ 
        pwhh |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
 dlrconsae45 |   .0901913   .0839291     1.07   0.283    -.0743067    .2546894 
 dlrconsae34 |   .1136245   .0955152     1.19   0.234    -.0735818    .3008307 
 dlrconsae23 |   .0954875   .0878546     1.09   0.277    -.0767044    .2676794 
pwag_dw~1564 |  -.0058935   .0137676    -0.43   0.669    -.0328774    .0210905 
pwag_dw_n014 |  -.0063456   .0088594    -0.72   0.474    -.0237096    .0110185 
pwag_dw_n6~p |   .0212255    .023502     0.90   0.366    -.0248375    .0672885 
 headed5_any |  -.0868071   .1794755    -0.48   0.629    -.4385725    .2649584 
   lheadage5 |  -.5859348   .2240272    -2.62   0.009     -1.02502   -.1468497 
    femhead5 |  -.2171898   .1447859    -1.50   0.134     -.500965    .0665854 
    not_able |  -1.305092   .2411725    -5.41   0.000    -1.777781    -.832402 
   lhhsize02 |   .1271798   .1346558     0.94   0.345    -.1367407    .3911002 
   depratio5 |   .0023378    .048843     0.05   0.962    -.0933927    .0980683 
   ownttlld5 |  -.1186871   .2271286    -0.52   0.601     -.563851    .3264767 
 ownttlld5_2 |   .0731684    .059554     1.23   0.219    -.0435553    .1898922 
   pwc_hhmet |   .2327307   .1587953     1.47   0.143    -.0785024    .5439637 
     drt9395 |   .1139127   .1482278     0.77   0.442    -.1766085    .4044338 
  death_9902 |   .0117345   .1401814     0.08   0.933    -.2630161     .286485 
illmale_9902 |  -.3385186   .2272103    -1.49   0.136    -.7838426    .1068054 
illfema~9902 |   .0528919   .2314581     0.23   0.819    -.4007576    .5065414 
   born_here |  -.1909949   .1524115    -1.25   0.210    -.4897161    .1077262 
fathermoth~c |   .3191964   .1322201     2.41   0.016     .0600497    .5783432 
     n_iddir |   -.065811   .1195579    -0.55   0.582    -.3001403    .1685183 
netsize_less |   .0268816   .1432336     0.19   0.851     -.253851    .3076142 
netsize_more |  -.1792897   .1431511    -1.25   0.210    -.4598606    .1012812 
total_netw~s |  -.0052962   .0052219    -1.01   0.310    -.0155309    .0049385 
         pa1 |  -.2871679   .2938195    -0.98   0.328    -.8630436    .2887078 
         pa3 |  -.6055412   .3740617    -1.62   0.105    -1.338689    .1276063 
         pa6 |   .5688213   .3297202     1.73   0.084    -.0774183    1.215061 
         pa8 |  -1.018245   .3376892    -3.02   0.003    -1.680104   -.3563865 
         pa9 |   -.071929   .7028182    -0.10   0.918    -1.449427    1.305569 
        pa13 |   .1331518   .3798018     0.35   0.726    -.6112462    .8775497 
        pa15 |  -.6023727   .3094828    -1.95   0.052    -1.208948    .0042025 
        pa16 |  -.7053323   .3901619    -1.81   0.071    -1.470036     .059371 
       _cons |   2.670589   .9939073     2.69   0.007     .7225667    4.618612 
------------------------------------------------------------------------------ 
 
 
predict pwhh_h if e(sample)==1, p; 
(709 missing values generated) 
 
. keep if e(sample)==1; 
(709 observations deleted) 
 
. sum pwhh_h if pwhh==0; 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
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-------------+-------------------------------------------------------- 
      pwhh_h |       232    .4748997    .2175047   .0191887   .9705976 
 
. local min=r(min); 
 
. local max=r(max); 
 
. scatter pwhh pwhh_h, xline(`min' `max'); 
 
. disp `min'; 
.01918869 
 
. disp `max'; 
.97059757 
 
/* NOTE: min,max determine the common support. Treated observations with 
pscores outside this region are discarded from the analysis. 
 
. /* treated on common support */ 
> count if pwhh==1 & pwhh_h<=`max' & pwhh_h>=`min'; 
  367 
 
. /* nontreated on common support */ 
> count if pwhh==0 ; 
  232 
 
/* So a total of 599 observations on the common support. */ 
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Figure 1: The region of common support 
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Figure 2: Regression, poor common support, and extrapolation 

 
Note: Circled observations are treated, non-circled observations are nontreated. There are 
very few nontreated observations for which x is high.  
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3.  Calculating the counterfactual for a treated observation using kernel 
matching: Illustration 
 

The Stata command psmatch2 uses an Epanechnikov kernel. The Epanechnikov density 

function is equal to ( )2175.0 u− , where u takes values between -1 and 1 (for values of u 

outside this range, the density is zero). The density function looks as follows: 

 

Figure 3: The Epanechnikov distribution 

 
 

With kernel matching, recall that the weight for individual i is equal to 

 
 

Notice that the argument of K is the difference between the propensity score of individual 

i (the treated individual) and the propensity score of individual j. 

 

Now take a look at the data in Table (taken from Hoddinott and Gilligan, 2007), where I 

have computed the propensity score, and sorted the data from the lowest to the highest 

pscore value: 
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Table 2: Propensity scores and kernel weighting 
pscore pwhh K dlrconsae56 weight weight x 

dlrconsae56 
for matched 
obs only 

Estimated 
counterfactual 

0.0192 0 . 1.645944 .   
0.0271 0 0.1633 0.1656 0.0193 0.003196  
0.0323 0 0.2729 0.9741 0.0323 0.031463  
0.0496 0 0.555 0.4457 0.0656 0.029238  
0.0623 0 0.6833 0.6962 0.0808 0.056253  
0.0678 0 0.7181 0.5031 0.0849 0.042713  
0.0705 0 0.7305 2.5273 0.0864 0.218359  
0.0802 1 . 0.041 .  0.071846 
0.0814 0 0.7497 -0.4217 0.0886 -0.03736  
0.0864 0 0.7419 -1.0075 0.0877 -0.08836  
0.0868 1 . 0.9315 .   
0.0927 0 0.7171 -0.176 0.0848 -0.01492  
0.0957 0 0.6999 -0.2276 0.0827 -0.01882  
0.1007 0 0.6625 0.2748 0.0783 0.021517  
0.1036 0 0.6354 -0.4609 0.0751 -0.03461  
0.1087 1 . -1.7197 .   
0.1227 0 0.3735 -1.0766 0.0442 -0.04759  
0.1286 0 0.2608 1.1565 0.0308 0.03562  
0.1303 0 0.2266 -2.3975 0.0268 -0.06425  
0.132 0 0.1911 -2.2201 0.0226 -0.05017  

0.1379 0 0.0566 -1.0091 0.0067 -0.00676  
0.1393 0 0.0206 -1.5242 0.0024 -0.00366  
0.1451 0 . 0.9553 .   
0.1467 0 . 0.6368 .   

       
SUM    1.000 0.071846  

 

Suppose now we want to calculate the counterfactual of the first treated individual in the 

data, i.e. the shaded observation. I see that his value of dlrconsae56 (which in this context 

is his y1) is equal to 0.0410.  

 

• First, I calculate values of K for all observations in the control group. To be able 

to do so, I need to define the 'bandwidth'. I set this to 0.06, which is the default in 

psmatch2). These values are shown in the third (K) column. Notice that 

observations in the control group that have values of the propensity score close to 

0.0802 get a relatively high value of K. 

• I proceed by calculating the weights for the observations in the control group, 

using the formula 



 10 

 
This gives me the values shown in the ‘weight’ column. Notice that they will sum 

to one. 

• I then obtain the weighted average of dlrconsae56 for the individuals in the 

control group, using these weights. That is my estimate of the counterfactual for 

the treated individual here. That value turns out to be 0.0718. 

• Thus, the treatment effect for this individual is 0.041-0.0718 = -0.0308. 

• To get the average treatment effect for the treated, I proceed as above for each 

treated individual, and then calculate the average of the treatment effects. This 

gives me an estimate equal to 0.21496, which is the number reported by 

Hoddinott & Gilligan. 

• If you were using a nearest neighbour approach instead of kernel matching, what 

would the counterfactual be?  
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4. Ignorability in the cross-section and in first differences 
 
Figure 4: Evaluation with panel and cross-section data (ignorability holds) 

 
 
 
Figure 5: Evaluation with panel and cross-section data (ignorability fails in the 
cross-section but holds in first differences) 

 
 
Now illustrate the case where ignorability doesn’t hold in first differences. 


