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1. Introduction

Data in which there is both a cross-section and a time series dimension o¤er important advantages relative

to pure cross-section data.

With repeated cross-sectional data, we often have a large number of observations, enabling us

to estimate the parameters of interest with lower standard errors than for a single cross-section. Such

data-sets may also enable us to estimate common dynamic trends (e.g. average TFP growth), and test

for parameter stability ("pooling") over time.

With panel data we can do everything that is possible with repeated cross-sections, plus we will be

able to control for individual-speci�c, time-invariant, unobserved heterogeneity, the presence of

which could lead to bias in standard estimators like OLS. We can also estimate dynamic equations.

The key di¤erence between repeated cross-sectional data and panel data is that panel data-sets follow

a random sample of individuals (or �rms, households, etc.) over time, whereas repeated cross-sections do

not.

In this lecture I will �rst discuss what the data need to look like, for the econometrics that then follow

to be relevant. I then discuss standard panel data estimators. This is followed by a brief discussion of

model selection. Finally, I discuss problems posed by endogeneity in the context of panel data models.

Useful references for this lecture:

� Wooldridge (2002) "Cross Section and Panel Data": Chapters 7.8; 10; 11.

2. Combined Time Series and Cross Section Data

Panel data combine a time series dimension with a cross section dimension, in such a way that there are

data on N individuals (or �rms, countries...), followed over T time periods. Not all data-sets that combine

a time series dimension with a cross section dimension are panel data-sets, however. It is important to

distinguish panel data from repeated cross-sections.
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2.1. A Panel Data-Set

� Panel data contains information on the same cross section units - e.g. individuals, countries or

�rms - over time. The structure of a panel data set is as follows:

id year yr92 yr93 yr94 x1 x2

1 1992 1 0 0 8 1

1 1993 0 1 0 12 1

1 1994 0 0 1 10 1

2 1992 1 0 0 7 0

2 1993 0 1 0 5 0

2 1994 0 0 1 3 0

(...) (...) (...) (...) (...) (...) (...)

where id is the variable identifying the individual that we follow over time; yr92, yr93 and yr94 are

time dummies, constructed from the year variable; x1 is an example of a time varying variable and

x2 is an example of a time invariant variable.

� In microeconomic data, N (the number of individuals, �rms...) is typically large, while T is small.

� In aggregate data, longer T is more common.

� The econometric theory discussed by Wooldridge (2002) mostly assumes that N is �large�while T

is �small�.

� In the opposite case, say N = 5 countries and T = 40 years, the topic becomes multiple time series.

� Throughout these lectures, I will focus mostly on the large N, small T case. Markus Eberhardt will

cover the case where T is large in his lectures.

� If the time periods for which we have data are the same for all N individuals, e.g. t = 1; 2; :::T , then

we have a balanced panel. In practice, it is common that the length of the time series and/or the

time periods di¤ers across individuals. In such a case the panel is unbalanced.
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� Analyzing unbalanced panel data typically raises few additional issues compared with analysis of

balanced data. However if the panel is unbalanced for reasons that are not entirely random (e.g.

because �rms with relatively low levels of productivity have relatively high exit rates), then we may

need to take this into account when estimating the model. This can be done by means of a sample

selection model. We abstract from this particular problem here.

� Repeated cross sections are obtained by sampling from the same population at di¤erent points in

time. The identity of the individuals (or �rms, households etc.) is not recorded, and there is no

attempt to follow individuals over time. This is the key reason why pooled cross sections are

di¤erent from panel data. Had the id variable in the example above not been available, we would

have referred to this as a pooled repeated cross-section data-set.

2.2. New Opportunities

� When we have a dataset with both a time series and a cross-section dimension, this opens up new

opportunities in our research. For example:

� Larger sample size than single cross-section, and so you should be able to obtain more precise

estimates (i.e. lower standard errors).

� You can now ask how certain e¤ects evolve over time (e.g. time trend in dependent variable; or

changes in the coe¢ cients of the model).

� Panel data enable you to solve an omitted variables problem.

� Panel data also enable you to estimate dynamic equations (e.g. speci�cations with lagged dependent

variables on the right-hand side).
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3. Using Panel Data To Address an Endogeneity Problem

� Arguably the main advantage of panel data is that such data can be used to solve an omitted

variables problem. Suppose our model is

yit = xit� + (�i + uit) ;

t = 1; 2; :::; T , where we observe yit and xit; and �i; uit are not observed. Our goal is to estimate

the parameter �. As usual, xit is a 1�K vector of regressors, and � is a K�1 vector of parameters

to be estimated.

� Throughout this lecture I will assume that the residual uit; which varies both over time and across

individuals, is serially uncorrelated.

� Our problem is that we do not observe �i, which is constant over time for each individual (hence

no t subscript) but varies across individuals. Hence if we estimate the model in levels using OLS

then �i will go into the error term: vOLSit = �i + uit.

� What would be the consequence of �i going into the error term?

� If �i is uncorrelated with xit, then �i is just another unobserved factor making up the residual.

It is true that OLS will not be BLUE, because the error term vOLSit is serially correlated:

corr
�
vOLSit ; vOLSi;t�s

�
=

�2�
�2� + �

2
u

for s = 1; 2; ::: (this calculation assumes that uit is non-autocorrelated; more on this below). This

suggests some FGLS estimator could be preferable (this is indeed the case; see below). Notice that

OLS would be consistent, however, and the only substantive problem with relying on OLS for this

model is that the standard formula for calculating the standard errors are wrong. This problem is

straightforward to solve, e.g. by clustering the standard errors on the individuals.

4



� But if �i is correlated with xit, then putting �i in the error term can cause serious problems. This,

of course, is an omitted variables problem, so we can use some of familiar results to understand the

nature of the problem. For the single-regressor model,

�̂
OLS

= � +

P
i

P
t xit (�i + uit)P
i

P
t x

2
it

;

hence

p lim �̂
OLS

= � +
cov (xit; �i)

�2x
;

which shows that the OLS estimator is inconsistent unless cov (xit; �i) = 0. If xit is positively

correlated with the unobserved e¤ect, then there is an upward bias. If the correlation is negative,

we get a negative bias.

� Can you think about applications for which a speci�cation like the following

yit = �xit + (�i + uit) ;

would be appropriate? How about:

� Individual earnings

�Household expenditures

�Firm investment

�Country income per capita.

What factors can reasonably be represented by �i? Can these be assumed uncorrelated with xit?

3.1. Model 1: The Fixed E¤ects ("Within") Estimator

� Model:

yit = xit� + (�i + uit) ; t = 1; 2; :::T ; i = 1; 2; :::; N; (3.1)
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where I have put �i + uit within parentheses to emphasize that these terms are unobserved.

� Assumptions about unobserved terms:

�Assumption 1.1: �i freely correlated with xit

�Assumption 1.2: E (xituis) = 0 for s = 1; 2; :::; T (strict exogeneity)

� We have seen that if �i is correlated with the variables in the xit vector, there will be an endogeneity

problem which would bias the OLS estimates. Under assumptions 1.1 and 1.2, we can use the Fixed

E¤ects (FE) or the First Di¤erenced (FD) estimator to obtain consistent estimates of � allowing

�i to be freely correlated with xit.

� Note that strict exogeneity rules out feedback from past uis shocks to current xit. One implication

of this is that FE and FD will not yield consistent estimates if xit contains lagged dependent

variables (yi;t�1; yi;t�2; :::).

� Note that when N is large and T is small, the assumption of strict exogeneity is crucial for the FE

and FD estimators to be consistent. In contrast, if T ! 1, strict exogeneity is not crucial Here,

we deal with large N small T .

� If the assumption that E (xituis) = 0 for s = 1; 2; :::; T , does not hold, we may be able to use

instruments to get consistent estimates. This will be discussed later.

To see how the FE estimator solves the endogeneity problem that would contaminate the OLS esti-

mates, begin by taking the average of (3.1) for each individual - this gives

�yi = �xi� + (�i + �ui) ; i = 1; 2; :::; N; (3.2)
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where �yi =
�PT

t=1 yit

�
=T , and so on.1 Now subtract (3.2) from (3.1):

yit � �yi = (xit � �xi)� + (�i � �i + uit � �ui) ;

yit � �yi = (xit � �xi)� + (uit � �ui) ;

which we write as

�yit = �xit� + �uit; t = 1; 2; :::T ; i = 1; 2; :::; N; (3.3)

where �yit is the time-demeaned data (and similarly for �xit and �uit).

This transformation of the original equation, known as the within transformation, has eliminated

�i from the equation.

� Hence, we can estimate � consistently by using OLS on (3.3). This is called the within estimator

or the Fixed E¤ects estimator.

� You now see why this estimator requires strict exogeneity: the equation residual in (3.3) contains

all realized residuals ui1; ui2; :::; uiT (since these enter �uit) whereas the vector of transformed ex-

planatory variables contains all realized values of the explanatory variables xi1; xi2; :::; xiT (since

these enter �xi). Hence we need E (xituis) = 0 for s = 1; 2; :::; T; or there will be endogeneity bias

if we estimate (3.3) using OLS.

� In Stata, we obtain FE estimates from the �xtreg�command if we use the option �fe�, e.g.

� xtreg yvar xvar, i(�rm) fe

� Rather than time demeaning the data, couldn�t we just estimate (3.1) by including one dummy

variable for each individual (or country, �rm...)? Indeed we could, and it turns out that this is

exactly the same estimator as the within estimator (can you prove this?). If your N is large, so that

you have a large number of dummy variables, this may not be a very practical approach however.

1Without loss of generality, the exposition here assumes that T is constant across individuals, i.e. that the panel is
balanced.
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3.2. Model 2: The First Di¤erencing Estimator

� Model:

yit = xit� + (�i + uit) ; t = 1; 2; :::T ; i = 1; 2; :::; N; (3.4)

where �i; uit are unobserved.

� Assumptions about unobserved terms:

�Assumption 2.1: �i freely correlated with xit

�Assumption 2.2: E (xituis) = 0 for s = t; t� 1: This is a weaker form of strict exogeneity than

what is required for FE, in the sense that E (xitui;t�2) = 0; for example, is not required). Thus,

if there is feedback from uit to xit that takes more than two periods, FD will be consistent

whereas FE will not (hence weaker form of strict exogeneity).

� Starting from the model in (3.4), but rather than time-demeaning the data (which gives the FE

estimator), we now di¤erence the data:

yit � yi;t�1 = (xit � xi;t�1)� + (�i � �i + uit � ui;t�1) ;

�yit = �xit� +�uit: (3.5)

Clearly this removes the individual �xed e¤ect, and so we can obtain consistent estimates of � by

estimating the equation in �rst di¤erences by OLS.

� You now see why this estimator requires strict exogeneity: the equation residual in (3.5) contains the

residuals uit and ui;t�1 whereas the vector of transformed explanatory variables contains xit; xi;t�1:

Hence we need E (xituis) = 0 for s = t; t� 1; or there will be endogeneity bias if we estimate (3.5)

using OLS.

FE or FD?

� So FE and FD are two alternative ways of removing the �xed e¤ect. Which method should we use?
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� First of all, when T = 2 (i.e. we have only two time periods), FE and FD are exactly equivalent

and so in this case it does not matter which one we use (try to prove this).

� But when T � 3, FE and FD are not the same. Under the null hypothesis that the model is

correctly speci�ed, FE and FD will di¤er only because of sampling error whenever T � 3. Hence, if

FE and FD are signi�cantly di¤erent - so that the di¤erences in the estimates cannot be attributed

to sampling error - we should worry about the validity of the strict exogeneity assumption. More

on this below (see also Wooldridge, 2002, Section 10.7).

� If uit is a random walk (uit = ui;t�1+�it), then�uit is serially uncorrelated and so the FD estimator

will be more e¢ cient than the FE estimator.

� Conversely, under "classical assumptions", i.e. uit � iid
�
0; �2u

�
, the FE estimator will be more

e¢ cient than the FD estimator (as in this case the FD residual �uit will exhibit negative serial

correlation).

3.3. Model 3: The Pooled OLS Estimator

� Model:

yit = xit� + (�i + uit) ; t = 1; 2; :::T ; i = 1; 2; :::; N (3.6)

where �i; uit are unobserved.

� Assumptions about unobserved terms:

�Assumption 3.1: �i is uncorrelated with xit: E (xit�i) = 0

�Assumption 3.2: E (xituit) = 0 (xit predetermined)

� Note that A3.1 is stronger than A1.1 and A2.1 whereas A3.2 is weaker than A1.1 and A2.1.

Clearly under these assumptions, vOLSit = (�i + uit) will be uncorrelated with xit, implying we can

estimate � consistently using OLS. In this context we refer to this as the Pooled OLS (POLS)

estimator.
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� To do inference based on the conventional OLS estimator of the covariance matrix, we need to

assume homoskedasticity and no serial correlation in the data. Both of these assumptions can be

restrictive, especially the latter one. As a rule of thumb, it is a good idea to obtain an estimate of

the covariance matrix that is robust to heteroskedasticity and autocorrelation, using the following

�sandwich�formula (see also the �Box�in the �rst computer exercise):

V R
�
�̂
POLS

�
=

 
NX
i=1

X 0
iXi

!�1 NX
i=1

X 0
iûiû

0
iXi

! 
NX
i=1

X 0
iXi

!�1
;

In Stata, we get this by using the option �cluster�, e.g.

regress yvar xvar, cluster(�rm)

� We can also test for heteroskedasticity and serial correlation for this estimator. The procedure is

similar to that for other estimators and so I will not go through that here. See Wooldridge (2002),

Section 7.8.5, for details.

3.4. Model 4: The Random E¤ects Estimator

� Model:

yit = xit� + (�i + uit) ; t = 1; 2; :::T ; i = 1; 2; :::; N:

� Assumptions about unobserved terms:

�Assumption 4.1: �i uncorrelated with xit: E (xit�i) = 0

�Assumption 4.2: E (xituis) = 0 for s = 1; 2; :::; T (strict exogeneity)

� Note that this combines the strongest assumption underlying FE/FD estimation (strict exogeneity)

with the strongest assumption underlying POLS estimation (no correlation between time invariant

part of residual and the explanatory variables). Why we need these assumptions will be clear below.

� So clearly Models 1-3 above will all give consistent estimates under A4.1-2.
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� Consider using POLS in this case. It is straightforward to show that POLS is ine¢ cient since the

residual vOLSit = (�i + uit) is serially correlated. To see this, note that

E
�
vOLSit ; vOLSi;t�s

�
= E[(�i + uit) (�i + ui;t�s)]

= E
�
�2i + �iuit + �iui;t�s + uitui;t�s

�
= E

�
�2i
�

= �2�;

and so

corr
�
vOLSit ; vOLSi;t�s

�
=

E
�
vOLSit ; vOLSi;t�s

�q
�2vt�

2
vt�s

corr
�
vOLSit ; vOLSi;t�s

�
=

�2�
�2� + �

2
u

; (3.7)

for s = 1; 2; :::; since �2vt = �
2
vt�s = �

2
�+�

2
u: (this calculation assumes that uit is non-autocorrelated,

which I have already assumed). If we are concerned with e¢ ciency, we may want to consider a

GLS estimator that takes this serial correlation into account. Also note that if �2� is high relative

to �2u the serial correlation in the residual will be high. As a result the conventional estimator of

the covariance matrix for the OLS estimator will not be correct (but we�ve seen how we can �x this

problem for POLS by �clustering�).

� The Random E¤ects (RE) estimator is a GLS estimator that takes (3.7) into account. This works

as follows.

The RE Transformation

� Using GLS involves transforming the original equation, so that the transformed equation ful�ls the

assumptions underlying the classical linear regression model.
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� Panel data model

yit = xit� + �i + uit:

� De�ne

� = 1�
�

�2u
T�2� + �

2
u

�1=2
:

� Multiply � by the individual average of the original equation:

��yi = ��xi� + ��v
RE
i :

� Subtract this expression from the original equation:

yit � ��yi = (xit � ��xi)� +
�
vREit � ��vREi

�
:

Using OLS on this, the transformed equation, gives the random e¤ects GLS estimator.

� This estimator is e¢ cient, because

vREit � ��vREi

is now serially uncorrelated. It is not obvious that this is the case, but it is (see Appendix for a

proof).

� The parameter � is not known and so it has to be estimated �rst. This involves estimating �2u

and �2�. There are various ways of doing this. The simplest, perhaps, is to use POLS in the �rst

stage to obtain estimates of the composite residual v̂it. Based on this, we can calculate �2� as the

covariance between v̂it and v̂i;t�1 (for instance), and

�̂2u = �̂
2
v � �̂2�:

We can then plug �̂2� and �̂
2
u into the formula for �, and then estimate the transformed equation.
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� In Stata, we can obtain the RE GLS estimator by using the command �xtreg�, e.g.

xtreg yvar xvar, i(�rm)

� If � = 0, what do we get? What if � = 1?

[EXAMPLE: Section 1 in appendix - production function estimates.]
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4. Model Selection

We have discussed four estimators of the panel data model:

1. Fixed E¤ects

2. First Di¤erences

3. Pooled OLS (i.e. OLS estimation of the levels equation)

4. Random E¤ects

Which one should we use? The following tests will provide some guidance:

� Testing for non-zero correlation between the unobserved e¤ect and the regressor(s): FE versus RE.

� Testing for the presence of an unobserved e¤ect: RE versus pooled OLS

Testing for non-zero correlation between the unobserved e¤ect and the regressor(s).

� An important consideration when choosing between a random e¤ects and �xed e¤ects approach is

whether �i is correlated with xit. To test the hypothesis that �i is uncorrelated with xit, we can

use a Hausman test.

� Recall that the Hausman test in general involves comparing one estimator which is consistent

regardless of whether the null hypothesis is true or not, to another estimator which is only consistent

under the null hypothesis.

� In the present context, the FE estimator is consistent regardless of whether �i is or isn�t correlated

with xit, while the RE requires this correlation to be zero in order to be consistent. Strict exogeneity

is assumed for both models.

� The null hypothesis is that both models are consistent, and a statistically signi�cant di¤erence

is therefore interpreted as evidence against the RE model. If we cannot reject the null, we may

decide to use the RE model in the analysis on the grounds that this model is e¢ cient.
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� The Hausman statistic is computed as

H =
�
�̂
FE

� �̂
RE
�0 h

var
�
�̂
FE
�
� var

�
�̂
RE
�i�1

�
�
�̂
FE

� �̂
RE
�
;

using matrix notation. Under the null hypothesis, this test statistic follows a chi-squared distribu-

tion with M degrees of freedom, where M is the number of time varying explanatory variables in

the model.

� Notice that the Hausman test by default compares all the parameters in the model across the two

estimators. Sometimes we are primarily interested in a single parameter, in which case we can use

a t test that ignores the other parameters. If �1 is the element in � that we wish to use in the test,

then the Hausman t statistic is simply

tH =
�̂
FE

1 � �̂
RE

1�
se
�
�̂
FE

1

�2
� se

�
�̂
RE

1

�2�1=2 ;

where se denotes the standard error of the estimated coe¢ cient. Notice that tH =
p
H if M = 1.

The tH statistic has a standard normal distribution i.e. absolute values of tH in excess of 1.96

suggests the null hypothesis should be rejected.

� Note that it is sometimes the case that there are large di¤erences between the FE and RE point

estimates of the coe¢ cients but, due to high standard errors, the Hausman statistic fails to reject.

What should be done in this case? A typical response is to conclude that the RE assumptions hold

and to focus on the RE estimates. In doing so, however, we may make a Type II error: failing

to reject an assumption when it is false. We can�t really know if this is the case or not. Some

judgement is required here. If RE and FE estimates di¤er a lot but the Hausman test does not

reject, then this is worth mentioning in the analysis.
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Testing for the presence of an unobserved e¤ect: The Breusch-Pagan test.

� If the regressors are strictly exogenous and uit is non-autocorrelated and homoskedastic, then POLS

and RE will both be e¢ cient if there are no unobserved e¤ects, i.e. �2� = 0. If �
2
� > 0 then RE is

e¢ cient (provided, of course, that �i is uncorrelated with the explanatory variables).

� The most common test of H0 : �2� = 0 is the Lagrange multiplier test due to Breusch and

Pagan (1980). This test is calculated in Stata by means of the instruction �xttest0�, following RE

estimation. The test statistic is based on the pooled OLS residuals, and is written

LM =
NT

2 (T � 1)

"P
i (
P

t v̂it)
2P

i

P
t v̂
2
it

� 1
#2

for a balanced panel, where v̂it is the estimated pooled OLS residual. Under the null hypothesis,

LM is distributed as chi-squared with one degree of freedom.

� I will not derive the BP test statistic, but the intuition is as follows:

�Under the null hypothesis (
P

t v̂it)
2
=
P

t v̂
2
it, in which case the term within [:] will be zero.

�However, if �2� > 0; then (
P

t v̂it)
2
>
P

t v̂
2
it , hence LM > 0. Notice that for T = 2;

 X
t

v̂it

!2
= v̂2i1 + 2v̂i1v̂i2 + v̂

2
i2;

and 2v̂i1v̂i2 will be strictly positive if �2� > 0.

[EXAMPLE: Appendix Section 1 - model speci�cation tests.]

5. What to do if some of your explanatory variables are time invariant?

The model:

yit = xit� + (�i + uit) :
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Suppose you do not believe that the time invariant term �i is uncorrelated with all your explanatory

variables. You are therefore considering FE or FD. However, suppose some or all of the variables in the

xit vector are time invariant, i.e. they do not change over time:

xit =

�
wit zi

�
;

where wit is a 1 � P vector of time varying variables, and zi is a 1 � (K � P ) vector of time invariant

variables. The model is now rewritten as

yit = wit�1 + zi�2 + (�i + uit) :

The problem is now obvious: FE and FD will eliminate zi and so �2 is not directly identi�ed by these

methods.

Now suppose you believe that �i is uncorrelated with zi (but correlated with wit). In this case, rather

than resorting the POLS or RE, a better approach will be a two-stage procedure:

1. Estimate

yit = wit�1 + (�i + uit)

using the FE or FD estimator. Back out the estimated �xed e¤ects (one for each individual):

�̂i = yit �wit�̂1:

Theoretically, �̂i is an estimate of zi�2 + �i.

2. Run the following regression:

�̂i = zi�2 + vi:

Under the assumption that �i is uncorrelated with zi, this is a consistent estimator of �2.

In a more general case where some of the variables in zi are correlated with �i, identi�cation of all
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the parameters in the model may still be possible if some of the variables in wit are uncorrelated with

�i. To see this, generalize the model further as follows:

yit = w
uc�
it �11 +w

c�
it �12 + z

uc�
i �21 + z

c�
i �22 + (�i + uit) ;

where the uc� superscript �ags variables that are uncorrelated with �i while c� denotes variables po-

tentially correlated with �i: Clearly FE or FD doesn�t identify �21 and �22; however �11 and �12 are

identi�ed. The �xed e¤ect in such a speci�cation is de�ned as

�i = yit �wuc�
it �11 +w

c�
it �12 � zuc�i �21 + z

c�
i �22 + �i:

Hence, once we have estimated

yit = w
uc�
it �11 +w

c�
it �12 + (�i + uit)

using FE or FD, we predict the �xed e¤ect �i. This can now be "unpacked" as follows:

�i = z
uc�
i �̂21 + z

c�
i �̂22 + ei: (5.1)

The problem now is that zc�i is correlated with ei. However, there are plenty of potential instruments

here, i.e. variables uncorrelated with eit. Clearly zuc�i and wuc�
it are potential instruments (by assump-

tion), and so are �wc�
it = wc�

it � �wc�
i , i.e. the time demeaned time varying variables that we suspect are

correlated with �i. This suggests estimating (5.1) using a 2SLS approach with these instruments. Such a

procedure is known as a Hausman-Taylor estimator, see Section 11.4 in Wooldridge (2002) for details.
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6. What if Strict Exogeneity Doesn�t Hold?

The model, again:

yit = xit� + (�i + uit) :

Strict exogeneity:

E (xituis) = 0; s = 1; 2; :::; t; :::; T

� If �i is correlated with xit then - as we have seen - OLS and RE will generally be inconsistent, and

FE or FD may be used instead, provided strict exogeneity holds. The FD approach, for example,

involves transforming the data and then estimating the model

yit � yi;t�1 = (xit � xi;t�1)� + (uit � ui;t�1)

using OLS. Naturally, the resulting estimate of � will only be consistent if (xit � xi;t�1) is uncor-

related with the equation residual (uit � ui;t�1). This will hold under strict exogeneity.

� But: strict exogeneity may not hold! Examples:

�A seemingly mild form of non-exogeneity in this context is when uit is uncorrelated with xit

but correlated with future values of the regressors, e.g.

xi;t+1 = 'uit + ei;t+1:

A production function in which labour demand in period t + 1 responds to unobserved pro-

ductivity shocks in period t, represented by uit, is one example of this. In this case there is

sequential exogeneity - but not strict exogeneity.

�A second form of non-exogeneity occurs when there is contemporaneous correlation be-

tween the regressor and the residual, caused by, for instance, omitted variables or measurement

errors in the explanatory variable uncorrelated with the true value of the regressor. That is,
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E (xituit) 6= 0.

� In both of these cases, FE, FD and RE estimates will typically be inconsistent.

� In other words, if strict exogeneity does not hold, the panel data approach will not solve all our

problems. If so, we need to do more work.2

2 In the discussion of non-exogeneity I focus exclusively on the Fixed E¤ects (FE) and First Di¤erence (FD) models and
not the Random E¤ects (RE) model. The reason is that the standard version of the latter model does not even allow for
correlation between the regressors and the time invariant individual e¤ect.
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7. Sequential Exogeneity

A less restrictive assumption than strict exogeneity is sequential exogeneity, which we state as

E (xituis) = 0; s = t; t+ 1; :::; T:

When this assumption holds we will say that the xit are sequentially exogenous. The key di¤erence

compared to strict exogeneity is that

E (xituis) = 0; s = 1; 2; :::; t� 1

is not imposed under sequential exogeneity. Thus, a process like

xi;t+1 = 'uit + ei;t+1;

where ' 6= 0 and eit is exogenous and non-autocorrelated, is consistent with sequential exogeneity, but

not with strict exogeneity .

What is the implication of sequential exogeneity for the FE model? Recall that the FE model is

equivalent to running an OLS regression on data expressed in deviations from individual means:

�yit = �xit� + �uit;

where �yit = yit� �yi; �xit = xit��xi and �uit = uit� �ui. Hence for the FE model to be consistent we require

E (�xit�uit) = 0
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as usual. For the single regressor model, we have

E (�xit�uit) = E [(xit � �xi) (uit � �ui)]

E (�xit�uit) = E (xituit)� E (�xiuit)� E (xit�ui) + E (�xi�ui)

where E (xituit) = 0 by implication of sequential exogeneity, but E (�xiuit) ; E (xit�ui) and E (�xi�ui) will

be non-zero since strict exogeneity does not hold.

We can do a similar analysis of the FD model:

�yit = ��xit +�uit;

hence

E (�xit�uit) = E [(xit � xi;t�1) (uit � ui;t�1)]

= E (xituit) + E (xi;t�1ui;t�1)� E (xitui;t�1)� E (xi;t�1uit)

= �E (xitui;t�1)

which is di¤erent from zero unless there is strict exogeneity.

Example: Introduction to Dynamic Panel Data Models Consider the simple autoregressive

model:

yit = �1yi;t�1 + (�i + "it) ; t = 1; 2; :::; T; (7.1)

where 0 � �1 < 1 and "it is non-autocorrelated (i.e. the process is stationary). Some observations:

� Since �i is part of the process that generates the explanatory variable yi;t�1, we have E (yi;t�1�i) >

0. Hence POLS or RE will not work - you�d expect these estimators to produce an estimate of �1

that is upward biased.
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� Also, since "i;t�1 determines yi;t�1, strict exogeneity does not hold. Hence FD and FE will not

work.

� To see the latter result more clearly, consider estimating (7.1) in �rst di¤erences:

yit � yi;t�1 = �1 (yi;t�1 � yi;t�2) + ("it � "i;t�1) : (7.2)

While the FD transformation has eliminated �i, we see that the di¤erenced residual ("it � "i;t�1)

generally will not be uncorrelated with (yi;t�1 � yi;t�2) ; since "i;t�1 impacts on yi;t�1:

yi;t�1 = �1yi;t�2 + �i + "i;t�1;

which follows from (7.1). We see that

"i;t�1 %=)

8>><>>:
("it � "i;t�1)&

yi;t�1 %=) (yi;t�1 � yi;t�2)%

9>>=>>; ;

thus

E [("it � "i;t�1) (yi;t�1 � yi;t�2)] < 0;

and so we expect the bias �1 in from estimating (7.1) by �rst di¤erences to be negative. Hence, you�d

expect this estimator to produce an estimate of �1 that is downward biased

A similar result can be derived for the FE model.

[EXAMPLE - Section 2 in the appendix: AR(1) models for log sales.]

8. Contemporaneous Correlation between the Regressor and the Residual

Consider the model

yit = �1zit + �2xit + �i + uit;
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where xit is correlated with the individual e¤ect �i and contemporaneously correlated with uit:

E (�ixit) 6= 0;

E (uitxit) 6= 0; (8.1)

while zit is strictly exogenous, but possibly correlated with �i:

E (�izit) 6= 0;

E (uitzit) = 0:

The correlation between xit and uit can be due to any of the three problems studied previously:

� Omitted variables

� Measurement errors

� Simultaneity

In general, FD, FE, POLS and RE will not give consistent estimates if there is non-zero contempora-

neous correlation between the regressor(s) and the error term.

Suppose the above equation represents a production function. Then FE or FD estimation will recog-

nize that �i may be correlated with the input xit; for instance, because �rms with better management

(which is time invariant) use more inputs. But it is also possible that uit, which we can think of as an

time varying demand shock, is correlated with the input: when demand is high, �rms increase the level

of the input and vice versa.

9. What To Do Then...?

If strict exogeneity does not hold while at the same time the time invariant e¤ect is correlated with the

explanatory variables, none of the estimators considered in this lecture will be consistent. However, we
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may be able to obtain consistent parameter estimates by using instruments. This is the main idea behind

estimation of dynamic panel data models, which Steve Bond will talk about in his lectures.
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Appendix: The Random E¤ects Transformation
De�ne:

vREit = �i + uit;

and

� = 1�
�

�2u
T�2� + �

2
u

�1=2
:

Proposition 1. The transformed RE residual
�
vREit � ��vREi

�
is serially uncorrelated, and so using OLS

on the transformed equation

yit � ��yi = � (xit � ��xi) +
�
vREit � ��vREi

�

will give an e¢ cient GLS estimator.

Proof. We want to prove

E
��
vREit � ��vREi

� �
vREi;t�s � ��vREi

��
= 0;

i.e. that there is no serial correlation in the transformed residual. By de�nition,

E
��
vREit � ��vREi

� �
vREi;t�s � ��vREi

��
= A+B + C +D;

where

A = E
�
vREit v

RE
i;t�s

�
;

B = ��E
�
vREit �vREi

�
;

C = ��E
�
vREi;t�s�v

RE
i

�
;

D = �2E
��
�vREi

�2�
:
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Thus our task is to show that A+B + C +D = 0:

We have

A = E
�
vREit v

RE
i;t�s

�
= E ((�i + uit) (�i + ui;t�s))

= E
�
�2i + �iui;t�s + uit�i + uitui;t�s

�
= �2� + 0 + 0 + 0;

since �i is uncorrelated with uit and all lags and leads of uit; and since uit is serially uncorrelated.

We have

B = ��E ((�i + uit) (�i + �ui))

= ��
�
�2� + E (uit�ui)

�
= ��

�
�2� + E

�
uit

�
ui1 + ui2 + :::+ uit + :::+ uiT

T

���
= ��

�
�2� +

�2u
T

�
;

and

C = B:

Finally, we have

D = �2E
��
�vREi

�2�
= �2E

�
(�i + �ui)

2
�

= �2E
�
�2i + 2�i�ui + �u

2
i

�
= �2

�
�2� + 0 + E

�
�u2i
��

= �2
�
�2� +

�2u
T

�
:
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Thus,

A+B + C +D = �2� � 2�
�
�2� +

�2u
T

�
+ �2

�
�2� +

�2u
T

�
= �2� +

�
�2� +

�2u
T

��
�2 � 2�

�
: (9.1)

Now calculate
�
�2 � 2�

�
:

�
�2 � 2�

�
=

 
1�

�
�2u

T�2� + �
2
u

�1=2!2
� 2

 
1�

�
�2u

T�2� + �
2
u

�1=2!

=

 
1� 2

�
�2u

T�2� + �
2
u

�1=2
+

�
�2u

T�2� + �
2
u

�!
� 2 + 2

�
�2u

T�2� + �
2
u

�1=2
=

�
�2u

T�2� + �
2
u

�
� 1

=

�
�2u � T�2� � �2u
T�2� + �

2
u

�
=

�
�T�2�

T�2� + �
2
u

�
:

Plug this into (9.1):

A+B + C +D = �2� +

�
�2� +

�2u
T

��
�T�2�

T�2� + �
2
u

�
= �2� +

�
T�2� + �

2
u

T

��
�T�2�

T�2� + �
2
u

�
= �2� � �2�

= 0;

Q.E.D.
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1. Estimating a simple production function 

In this section we consider the results of four basic panel data models – i.e. POLS, RE, FE, 
FD – for a simple Cobb-Douglas production function of the following form: 

 ( )ititit kny εαγββ ++++= 21  

where yit denotes log sales, nit is log employment, kit is log capital stock,  tγ  is a time effect 
common to all firms, αi is a firm specific time invariant effect, εit is a time varying residual, 
and i,t denote firm and year, respectively. The data is a balanced panel of 509 R&D-
performing US manufacturing companies observed for 8 years, 1982-89. These data have 
been analyzed previously by Blundell and Bond (2000).  

 
Table 1.1 OLS, levels 
 
 
. reg y n k yr2-yr8, cluster(id) 
 
Linear regression                                      Number of obs =    4072 
                                                       F(  9,   508) = 2507.63 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.9693 
                                                       Root MSE      =  .35256 
 
                                   (Std. Err. adjusted for 509 clusters in id) 
------------------------------------------------------------------------------ 
             |               Robust 
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           n |   .5578836   .0308763    18.07   0.000     .4972227    .6185445 
           k |   .4322828   .0274846    15.73   0.000     .3782853    .4862803 
         yr2 |  -.0568626   .0083657    -6.80   0.000    -.0732982   -.0404269 
         yr3 |   -.050041   .0110933    -4.51   0.000    -.0718355   -.0282465 
         yr4 |  -.0875714   .0135255    -6.47   0.000    -.1141442   -.0609987 
         yr5 |   -.092866    .016461    -5.64   0.000     -.125206   -.0605259 
         yr6 |  -.0580931   .0174944    -3.32   0.001    -.0924634   -.0237228 
         yr7 |  -.0211632   .0185846    -1.14   0.255    -.0576754     .015349 
         yr8 |  -.0382923    .020265    -1.89   0.059    -.0781058    .0015213 
       _cons |   3.046843   .0915369    33.29   0.000     2.867005     3.22668 
------------------------------------------------------------------------------ 
 
. test n+k=1 



 
 ( 1)  n + k = 1 
 
       F(  1,   508) =    1.58 
            Prob > F =    0.2095 
 
 
Table 1.2 Random effects GLS, levels  
 
. xtreg y n k yr2-yr8 
 
Random-effects GLS regression                   Number of obs      =      4072 
Group variable: id                              Number of groups   =       509 
 
R-sq:  within  = 0.7352                         Obs per group: min =         8 
       between = 0.9727                                        avg =       8.0 
       overall = 0.9683                                        max =         8 
 
Random effects u_i ~ Gaussian                   Wald chi2(9)       =  27784.44 
corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000 
 
------------------------------------------------------------------------------ 
           y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           n |   .6449503   .0128055    50.36   0.000     .6198519    .6700487 
           k |   .3240523   .0111113    29.16   0.000     .3022746      .34583 
         yr2 |  -.0479095   .0094174    -5.09   0.000    -.0663673   -.0294517 
         yr3 |  -.0304206   .0095667    -3.18   0.001    -.0491709   -.0116702 
         yr4 |  -.0562695   .0098609    -5.71   0.000    -.0755966   -.0369424 
         yr5 |  -.0530942   .0101615    -5.23   0.000    -.0730105    -.033178 
         yr6 |  -.0137367   .0103345    -1.33   0.184    -.0339921    .0065186 
         yr7 |   .0262007   .0104546     2.51   0.012     .0057102    .0466913 
         yr8 |    .018625   .0109099     1.71   0.088    -.0027581     .040008 
       _cons |   3.450817   .0425702    81.06   0.000     3.367381    3.534253 
-------------+---------------------------------------------------------------- 
     sigma_u |  .31878629 
     sigma_e |  .14715329 
         rho |  .82434862   (fraction of variance due to u_i) 
------------------------------------------------------------------------------ 
 
. estimates store re 
 
. xttest0 
 
Breusch and Pagan Lagrangian multiplier test for random effects 
 
        y[id,t] = Xb + u[id] + e[id,t] 
 
        Estimated results: 
                         |       Var     sd = sqrt(Var) 
                ---------+----------------------------- 
                       y |   4.041093       2.010247 
                       e |   .0216541       .1471533 
                       u |   .1016247       .3187863 
 
        Test:   Var(u) = 0 
                              chi2(1) =  9433.49 
                          Prob > chi2 =     0.0000 
 
. test n+k=1 
 
 ( 1)  n + k = 1 
 
           chi2(  1) =   25.04 
         Prob > chi2 =    0.0000 



Table 1.3 Fixed effects ("within") 
 
. xtreg y n k yr2-yr8, fe 
 
Fixed-effects (within) regression               Number of obs      =      4072 
Group variable: id                              Number of groups   =       509 
 
R-sq:  within  = 0.7379                         Obs per group: min =         8 
       between = 0.9706                                        avg =       8.0 
       overall = 0.9661                                        max =         8 
 
                                                F(9,3554)          =   1111.47 
corr(u_i, Xb)  = 0.5988                         Prob > F           =    0.0000 
 
------------------------------------------------------------------------------ 
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           n |   .6544609   .0144048    45.43   0.000     .6262184    .6827034 
           k |   .2329073    .013637    17.08   0.000     .2061702    .2596443 
         yr2 |  -.0376406   .0093042    -4.05   0.000    -.0558828   -.0193985 
         yr3 |  -.0076445   .0096071    -0.80   0.426    -.0264805    .0111914 
         yr4 |  -.0234513   .0100955    -2.32   0.020    -.0432449   -.0036578 
         yr5 |  -.0136103   .0105543    -1.29   0.197    -.0343034    .0070829 
         yr6 |   .0314121   .0108748     2.89   0.004     .0100907    .0527335 
         yr7 |   .0753576   .0111072     6.78   0.000     .0535805    .0971347 
         yr8 |   .0764164   .0118166     6.47   0.000     .0532485    .0995844 
       _cons |   3.863804   .0529288    73.00   0.000      3.76003    3.967578 
-------------+---------------------------------------------------------------- 
     sigma_u |  .42922318 
     sigma_e |  .14715329 
         rho |  .89482518   (fraction of variance due to u_i) 
------------------------------------------------------------------------------ 
F test that all u_i=0:     F(508, 3554) =    38.90           Prob > F = 0.0000 
 
. test n+k=1 
 
 ( 1)  n + k = 1 
 
       F(  1,  3554) =  121.32 
            Prob > F =    0.0000 
 
. estimates store fe 
 
. hausman fe re  
 
                 ---- Coefficients ---- 
             |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B)) 
             |       fe           re         Difference          S.E. 
-------------+---------------------------------------------------------------- 
           n |    .6544609     .6449503        .0095106        .0065967 
           k |    .2329073     .3240523        -.091145        .0079061 
         yr2 |   -.0376406    -.0479095        .0102689               . 
         yr3 |   -.0076445    -.0304206         .022776        .0008802 
         yr4 |   -.0234513    -.0562695        .0328182        .0021636 
         yr5 |   -.0136103    -.0530942         .039484        .0028525 
         yr6 |    .0314121    -.0137367        .0451488        .0033849 
         yr7 |    .0753576     .0262007        .0491569        .0037512 
         yr8 |    .0764164      .018625        .0577915        .0045393 
------------------------------------------------------------------------------ 
                           b = consistent under Ho and Ha; obtained from xtreg 
            B = inconsistent under Ha, efficient under Ho; obtained from xtreg 
 
    Test:  Ho:  difference in coefficients not systematic 
 
                  chi2(9) = (b-B)'[(V_b-V_B)^(-1)](b-B) 
                          =      143.16 
                Prob>chi2 =      0.0000 
                (V_b-V_B is not positive definite) 



Table 1.4 First Differences 
 
. reg dy dn dk yr3-yr8, cluster(id) 
 
Linear regression                                      Number of obs =    3563 
                                                       F(  8,   508) =  108.19 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.4072 
                                                       Root MSE      =  .14536 
 
                                   (Std. Err. adjusted for 509 clusters in id) 
------------------------------------------------------------------------------ 
             |               Robust 
          dy |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          dn |   .4759999    .029565    16.10   0.000     .4179151    .5340847 
          dk |   .2242109   .0360815     6.21   0.000     .1533236    .2950983 
         yr3 |   .0700838   .0101958     6.87   0.000     .0500527    .0901149 
         yr4 |   .0147162   .0106677     1.38   0.168     -.006242    .0356745 
         yr5 |   .0381541   .0107752     3.54   0.000     .0169846    .0593235 
         yr6 |   .0796229   .0092489     8.61   0.000      .061452    .0977938 
         yr7 |   .0774642   .0097661     7.93   0.000     .0582773    .0966512 
         yr8 |   .0325291   .0100251     3.24   0.001     .0128332    .0522249 
       _cons |  -.0289894   .0081968    -3.54   0.000    -.0450933   -.0128856 
------------------------------------------------------------------------------ 
 
. test dn+dk=1 
 
 ( 1)  dn + dk = 1 
 
       F(  1,   508) =  105.39 
            Prob > F =    0.0000 
 
  



2. Towards dynamics: Results for simple AR(1) specifications 
 
We now consider the results for a simple AR(1) specification for log sales: 
 
 ( )ititiit yy εαρ ++= −1,  
 
Table 2.1 Pooled OLS 
 
. reg y y_1 , cluster(id) 
 
Linear regression                                      Number of obs =    3563 
                                                       F(  1,   508) =       . 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.9912 
                                                       Root MSE      =  .18715 
 
                                   (Std. Err. adjusted for 509 clusters in id) 
------------------------------------------------------------------------------ 
             |               Robust 
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         y_1 |     .98832    .001953   506.06   0.000     .9844831    .9921569 
       _cons |   .1150687    .013331     8.63   0.000     .0888781    .1412593 
------------------------------------------------------------------------------ 
 
 
Table 2.2 Fixed Effects (within) 
  
. xtreg y y_1 , fe 
 
Fixed-effects (within) regression               Number of obs      =      3563 
Group variable: id                              Number of groups   =       509 
 
R-sq:  within  = 0.5879                         Obs per group: min =         7 
       between = 0.9981                                        avg =       7.0 
       overall = 0.9912                                        max =         7 
 
                                                F(1,3053)          =   4355.96 
corr(u_i, Xb)  = 0.9783                         Prob > F           =    0.0000 
 
------------------------------------------------------------------------------ 
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         y_1 |   .7380082    .011182    66.00   0.000     .7160832    .7599332 
       _cons |   1.573936   .0652301    24.13   0.000     1.446037    1.701835 
-------------+---------------------------------------------------------------- 
     sigma_u |  .51579652 
     sigma_e |  .16594538 
         rho |  .90620103   (fraction of variance due to u_i) 
------------------------------------------------------------------------------ 
F test that all u_i=0:     F(508, 3053) =     2.91           Prob > F = 0.0000 
 
 
  



Table 2.3 First differences 
 
. ge dy_1=d.y_1 
(1018 missing values generated) 
 
. reg dy dy_1 
 
      Source |       SS       df       MS              Number of obs =    3054 
-------------+------------------------------           F(  1,  3052) =   91.69 
       Model |  2.92890642     1  2.92890642           Prob > F      =  0.0000 
    Residual |   97.491852  3052  .031943595           R-squared     =  0.0292 
-------------+------------------------------           Adj R-squared =  0.0288 
       Total |  100.420758  3053  .032892486           Root MSE      =  .17873 
 
------------------------------------------------------------------------------ 
          dy |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        dy_1 |   .1608638   .0167995     9.58   0.000     .1279242    .1938034 
       _cons |   .0438578   .0033411    13.13   0.000     .0373068    .0504089 
------------------------------------------------------------------------------ 
 

 

So the estimate of ρ varies between 0.16 (FD) and 0.99 (POLS). What should we believe and 
why? 
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