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1. Introduction

� Last time we talked about the unobservability problem in econometrics, and how this impacts on

our ability to interpret regression results causally.

� We discussed how, under certain assumptions, a proxy variable approach can be used to mitigate

or even eliminate the bias posed by (for example) omitted variables. As the name suggests, the

proxy variable approach amounts to moving the unobservable variable from the residual to the

speci�cation itself.

� The instrumental variable approach, in contrast, leaves the unobservable factor in the residual

of the structural equation, instead modifying the set of moment conditions used to estimate the

parameters.

� Outline of today�s lecture:

�Recap & motivation of instrumental variable estimation

� Identi�cation & de�nition of the just identi�ed model

�Two-stage least squares (2SLS). Overidenti�ed models.

�Generalized method of moments (GMM)

� Inference & speci�cation tests

� IV estimation in practice - problems posed by weak & invalid instruments.

References:

Wooldridge (2002), Chapters 5; 6.2; 8 and 14

Murray, Michael P.(2006) "Avoiding Invalid Instruments and Coping with Weak Instruments," Journal

of Economic Perspectives, 2006, vol. 20, issue 4, pages 111-132

Wooldridge, J.M. (2001) Applications of Generalized Method Moments Estimation, Journal of Eco-

nomic Perspectives 15:4, pp.87-100.
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In addition, there is a rather long chapter in Angrist & Pischke entitled "Instrumental variables in

action", which we will discuss later in the course
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2. Instrumental Variables: Motivation and Recap

� Population model:

y = �1 + �2x2 + �3x3 + :::+ �KxK + u; (2.1)

where E (u) = 0; and cov (xj ; u) = 0; for j = 1; 2; :::;K�1 (from now on, we assume the "variable"

x1 is the constant), but where xK might be correlated with u, thus potentially endogenous, in which

case OLS is inconsistent.

� If an instrument is available, the method of instrumental variables (IV) can be used to address

the endogeneity problem, and provide consistent estimates of the structural parameters �j .

� Note: We thus focus initially on the special case where there is one endogenous explanatory variable

and one instrument.

� For the IV estimator to be consistent, the instrument z1 has to satisfy two conditions:

1. The instrument must be exogenous, or valid:

cov (z1; u) = 0:

This is often referred to as an exclusion restriction.

2. The instrument must be informative, or relevant. That is, the instrument z1 must be

correlated with the endogenous regressor xK , conditional on all exogenous variables in the

model (i.e. x2; :::; xK�1). That is, if we write the linear projection of xK onto all the exogenous

variables,

xK = �0 + �1x1 + �2x2 + :::+ �K�1xK�1 + �1z1 + rK ; (2.2)

where by de�nition of a linear projection error, rK ; is mean zero and uncorrelated with all the

variables on the right-hand side, we require �1 6= 0.
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� A corollary of these two conditions is that the instruments are not allowed to be explantory variables

in the original equation.

� Hence, if z1 is a valid and informative instrument, and �K 6= 0, z1 impacts on y but only indirectly,

through the variable xK .

� In what sense is an instrument very di¤erent from a proxy variable?
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3. Identi�cation & De�nition

The assumptions above (validity and relevance) enable us to identify the parameters of the model.

Loosely speaking, identi�cation means that we can write the parameters in the structural model

y = �1 + �2x2 + :::+ �KxK + u;

in terms of moments in observable variables. Sticking to the example introduced, recall that we are

happy to assume exogeneity for x2; :::; xK�1, so that

E (1 � u) = 0 (3.1)

E (x2u) = 0

E (x3u) = 0

(:::)

E (xK�1u) = 0;

however we did not want to assume

E (xKu) = 0;

because we suspect xK is endogenous: E (xKu) 6= 0.

Now, if all we have are the moment conditions in (3.1), the parameters of the model are not identi�ed.

The reason is simple: with only K�1 moment conditions, we cannot solve for K parameters. This model

is therefore underidenti�ed.

If the instrument z1 is available (available = we have the data, and we believe the variable satis�es

relevance and validity), we are in business, because the instrument validity assumption provides the

additional moment condition

E (z1u) = 0:
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Hence, using matrix notation as follows

x =

�
1 x2 x3 ... xK

�
z =

�
1 x2 ... xK�1 z1

�
;

where each matrix element is a size N column vector, we write the structural model as

y = x� + u;

and the moment conditions (or orthogonality conditions) as

E (z0u) = 0:

Combining these two equations, we get

E (z0u) = 0

E (z0 (y � x�)) = 0

E (z0x)� = E (z0y) ;

which is a system of K linear equations (recall: z0 is K �N , x is N �K, � is K � 1, and y is N � 1).

Provided the matrix E (z0x) has full rank, i.e.

rank E (z0x) = K;

we can invert E (z0x) and solve for �:

� = [E (z0x)]
�1
E (z0y) :
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This solves for K unknown parameters � from K linear equations, hence this model is exactly identi-

�ed.

While � is expressed here as a function of population moments, we can use sample moments ("data";

recall the analogy principle) to consistently estimate �, provided we have a random sample of observations

on y;x; z1. This de�nes the instrumental variable estimator:

�̂
IV
=

 
N�1

NX
i=1

z0ixi

!�1 
N�1

NX
i=1

z0iyi

!
;

or, in full matrix notation,

�̂
IV
=
�
Z 0X

��1 �
Z 0Y

�
; (3.2)

where Z;X;Y are data matrices.

� Whilst it is clear how the validity condition enabled us to identify the model, the role of the second

condition - instrument relevance - may appear less clear. Recall that the instrument must be

correlated with the endogenous explanatory variable, conditional on the other exogenous variables

in the model.

� We need this condition, because otherwise the rank of E (z0x) will be less than K, and so the model

would be underidenti�ed. We skip the proof (problem 5.12 in Wooldridge provides some hints),

because the intuition is very clear: if �1 = 0 in

xK = �1 + �2x2 + :::+ �K�1xK�1 + �1z1 + rK ;

then that amounts to not having an instrument, in which case the model is underidenti�ed as we

have already seen.

You may want to be convinced that the IV estimator de�ned in (3.2) is consistent, under the assump-
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tions we have made. Notice that

�̂
IV

= (Z0X)
�1
(Z0 (X� + u))

�̂
IV

= � + (Z0X)
�1
(Z0u) :

Using Slutsky�s theorem, we get

p lim �̂
IV

= � + [E (Z0X)]
�1
E (Z0u)

p lim �̂
IV

= �;

hence consistent: as the sample size N goes to in�nity, the IV estimator converges in probability to the

true population value �.

� Student checkpoint : Convince yourself - and ideally someone else too - that you are able to prove

that for the model,

y = �1 + �2x2 + u;

where x2 is endogenous and an instrument z1 is available (satisfying the validity and relevance

conditions above):

x2 = �1z1 + r

we can obtain the IV estimate of �2 by means of a two-stage procedure:

1. Regress the endogenous variable x2 on the instrument z1 using OLS. Calculate the predicted

values of x2.

2. Use the predicted values (instead of the actual values) of x2 from the �rst regression as the

explanatory variable in the structural equation, and estimate using OLS. The resulting estimate

of the coe¢ cient on predicted x2 is the IV estimate of �2. Interpret this in terms of �purging�

the endogenous variable of the correlation with the residual.
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� Notice that if I use x2 as its own instrument in the �rst stage (i.e. z1 = x2), I obtain OLS estimates

in the second stage. So in a sense, OLS can actually be viewed as an IV estimator in which all

variables are assumed exogenous.

As already discussed, the validity and relevance conditions are equally important in identifying �2.

There is one important di¤erence between them, however:

� The relevance condition can be tested, for example by computing the t-statistic associated with �̂1

in the reduced form (�rst stage) regression.

� The validity condition, however, cannot be tested, because the condition involves the unobservable

residual u. Therefore, this condition has to be taken on faith, which is why relating the validity

condition to economic theory is very important for the analysis to be convincing. We return to this

at the end of this lecture, drawing on Michael Murray�s (2006) survey paper.

[EXAMPLE: Earnings, education and distance to school - Section 1 in the appendix]
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4. Multiple Instruments: Two-Stage Least Squares

� We considered above the simple IV estimator with one endogenous explanatory variable, and one

instrument. As already noted, this is a case of exact identi�cation. Similarly, if you have two

endogenous explanatory variables and two instruments, the model is again exactly identi�ed.

� If you have less instruments than endogenous regressors, the model is underidenti�ed.

� If you have more instruments than endogenous regressors, the model is overidenti�ed.

� In practice it is often a good idea to have more instruments than strictly needed, because the

additional instruments can be used to increase the precision of the estimates, and to construct tests

for the validity of the overidentifying restrictions (which sheds some light on the validity of the

instruments).

� But be careful! While you can add instruments appealing to this argument, a certain amount of

moderation is needed here. More on this below.

� Suppose we haveM instrumental variables for xK : z1; z2; :::; zM . Suppose each of these instruments

satis�es the validity condition

cov (zh; u) = 0;

for all h. If each of these has some partial correlation with xK (relevance condition), we could then

in principle compute M di¤erent IV estimators.

� Of course, that�s neither practical nor e¢ cient.

� Theorem 5.3 in Wooldridge asserts that the Two-Stage Least Squares (2SLS) estimator is

the most e¢ cient IV estimator. The 2SLS estimator is obtained by using all the instruments

simultaneously in the �rst stage regression:

xK = �1 + �2x2 + :::+ �K�1xK�1 + �1z1 + �2z2 + :::+ �MzM + rK :
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By de�nition, the OLS estimator of the �rst stage regression will construct the linear combina-

tion of the instruments most highly correlated with xK . By assumption all the instruments are

exogenous, hence this procedure retains more exogenous variation in xK than would be the case for

any other linear combination of the instruments.

� Another way of saying this is that the instruments produce exogenous variation in predicted xK :

x̂K = �̂1 + �̂2x2 + :::+ �̂K�1xK�1 + �̂1z1 + �̂2z2 + :::+ �̂MzM ;

and OLS estimation in the �rst stage ensures there is as much such variation as possible. With

fewer instruments there would be less exogenous variation in this variable, hence such estimators

would not be e¢ cient.

� What is the relevance condition, in this case where there are more instruments than endogenous

regressors? In the current example, where we only have one endogenous regressor, it is easy to see

that at least one of �j in the �rst stage has to be nonzero for the model to be identi�ed.

You might be forgiven for thinking that, in practical applications, we should then use as many in-

struments as possible. After all, we said that including more instruments improves e¢ ciency of the 2SLS

estimator. However, it is now well known that having a very large number of instruments, relative to

the sample size, results in potentially serious bias, especially if some/many/all of the instruments are

only weakly correlated with the endogenous explanatory variables. As we shall see below, using too many

(weak) instruments tends to bias the 2SLS estimator towards the OLS estimator - i.e. the estimator we�re

trying to move away from! (What would happen if your number of instruments is equal to the number

of observations?) The advice on how to proceed in practice is to use a moderately overidenti�ed model,

trading o¤ less e¢ ciency for less bias. More on this below.
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4.1. 2SLS: The General Case

So far we have focussed on the case where there is only one endogenous explanatory variable. In my view,

this is a useful approach for studying the 2SLS estimator, because the main mechanisms carry over to

the more general case with several endogenous explanatory variables. Therefore I will discuss the general

case rather brie�y - you can refer to Section 5.2 in Wooldridge for details.

� The validity and relevance conditions in the general case, where several elements of x may be

correlated with u, are as follows:

E (z0u) = 0 (Validity)

rank (z0x) = K; (Relevance)

where z is 1 � L, and rank(z0z) = L, ruling out collinearity amongst the instruments. In this

notation, any exogenous element of x, including a constant, are included in z.

� The validity condition is straightforward to understand, but the relevance condition perhaps is not.

Clearly for the relevance condition, stated here as a rank condition, to hold, we need at least

as many instruments as there are explanatory variables: L � K. This is known as the order

condition. However, whilst necessary, L � K is not su¢ cient for rank(z0x) = K: the elements of

z must also be appropriately correlated with the elements of x.

� Testing the rank condition formally is tedious and somewhat involved, and so we will not go into

details here (neither does Wooldridge). It is useful, of course, to look carefully at the �rst stage

results. We will have as many �rst-stage regressions as there are endogenous explanatory variables,

and you need at least one signi�cant coe¢ cient on the instruments in each reduced form regression

for the model to be well identi�ed. This is a necessary, not su¢ cient condition, however. To see

this, consider the model

y = �1 + �2x2 + �2x3 + �3x4 + u;

where x3 and x4 are endogenous. We need at least two instruments, say z1 and z2, and these enter
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in the reduced form equations for x3 and x4:

x3 = �1 + �2x2 + �3z1 + �4z2 + "1;

x4 = 1 + 2x2 + 3z1 + 4z2 + "2:

� If �3 = 0; �4 6= 0; 3 = 0; 4 6= 0, the structural equation is not identi�ed, because the instrument

z1 is irrelevant in both equations - hence, e¤ectively we only have one instrument.

� If �3 = 0; �4 6= 0; 3 6= 0; 4 = 0, the structural equation is identi�ed, because the instrument z1 is

relevant in the equation determining x4, while the z2 is relevant for x3.

From a practical point of view, you will almost certainly notice if identi�cation fails. If your model

is literally not identi�ed, because you have too few instruments or because the instruments are collinear,

then Stata will report this and stop. If your instruments are very weakly correlated with the endogenous

explanatory variables, the coe¢ cients on the instruments in the �rst stage may be insigni�cant, and the

2SLS standard errors very large - correctly telling you that you are not learning anything from the current

model.

General expression for the 2SLS estimator.

� The algebra of the 2SLS estimator is more involved than that of the IV estimator. Using matrix

algebra helps us understand the general mechanisms. Recall that, for the IV estimator, we have

�̂
IV
=
�
Z 0X

��1
Z 0Y: (4.1)

It is straightforward to show that this expression can be expressed as

�̂
IV
=
�
X̂
0
X̂
��1

X̂
0
Y ;

i.e. OLS using predicted instead of actual values of the explanatory variables (for the exogenous
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variables in X, predicted and actual values coincide, of course).

� The same expression holds for 2SLS:

�̂
2SLS

=
�
X̂
0
X̂
��1

X̂
0
Y ; (4.2)

however because the model is overidenti�ed this does not give an expression for 2SLS equivalent to

(4.1). To see what we get if we write the 2SLS estimator in terms of the raw data vectors Z and

X, notice �rst that

X̂ = Z
�
Z 0Z

��1
Z 0X;

(this is simply using the OLS formula for the K dependent variables in the �rst stage - i.e. the K

explanatory variables in the second stage). I can now plug this into (4.2):

�̂
2SLS

=
�
X 0Z

�
Z 0Z

��1
Z 0Z

�
Z 0Z

��1
Z 0X

��1
X 0Z

�
Z 0Z

��1
Z 0Y

�̂
2SLS

=
�
X 0Z

�
Z 0Z

��1
Z 0X

��1
X 0Z

�
Z 0Z

��1
Z 0Y:

A common way of writing this is as

�̂
2SLS

=
�
X 0P zX

��1
X 0P zY;

where P z = Z
�
Z 0Z

��1
Z 0 is known as the projection matrix.
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5. Generalized Method of Moments

References: Chapters 8 and 14 in Wooldridge (2002). Wooldridge, J.M. (2001) Applications of Generalized

Method Moments Estimation, Journal of Economic Perspectives 15:4, pp.87-100.

� Consider the usual linear model:

yi =Xi� + ui; (5.1)

where Xi is a 1�P matrix of explanatory variables, � is a P � 1 vector of parameters, and yi and

ui are scalars.

� We have seen how the OLS estimator and the 2SLS estimator can be derived from a set of moment

conditions of the following form:

E (Z0iui) = 0;

where z is a vector of instruments (OLS is obtained by setting Zi= Xi). This way of deriving these

estimators �ts very well into the framework of Generalized Method of Moments (GMM).

� The formalization of GMM is usually attributed to Hansen (1982). Hansen showed that every

previously suggested instrumental variables estimator, in linear or nonlinear models, with cross-

section, time series or panel data, could be cast as a GMM estimator. GMM is therefore sometimes

viewed as a unifying framework for inference in econometrics.

� In this section I derive the general expression for the GMM estimator of the linear model, and show

how GMM relates to conventional estimators like OLS and 2SLS. A discussion of how GMM can

be used to test hypotheses of interest is provided below. I also show some empirical examples. I do

not provide a complete rigorous theoretical treatment of GMM however, because that would take

me too long. If you want to understand the theoretical foundations of the GMM estimator, please

consult Chapter 14 in Wooldridge (2002).
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5.1. The basis for the GMM estimator: Moment functions

� GMM is based on moment functions that depend on observable random variables and unknown

parameters, and that have zero expectation in the population when evaluated at the true para-

meters. Adopting the general notation of Wooldridge (Chapter 14), this is formalized as

E [g (wi;�)] = 0;

where g denotes the moment function, wi is a vector of observable random variables (e.g. our

instruments) and � is a P �1 vector of unknown parameters. The moment function g can be linear

or nonlinear.

� In linear models a natural way of writing the moment function is as Z 0i (yi �Xi�) ; since

E
�
Z 0i (yi �Xi�)

�
= 0 (5.2)

often can be related to theory (or at least theoretical reasoning). This is also exactly what the

moment conditions underlying 2SLS look like.

� Provided we have a random sample, we can appeal to the analogy principle and replace population

moments by sample moments. This enables us to estimate � based on the data.

� If the model is exactly identi�ed, so that L = P , where L is the number of instruments, there

are L moment conditions in (5.2) and they all hold exactly (because we solve for P parameters

based on L = P equations). As we have already seen, this gives either the IV estimator or the OLS

estimator, depending on how the moments are written.

� If the model is overidenti�ed, L > P; then in general there is no unique solution to (5.2),

because not all L sample moments corresponding to (5.2) will hold exactly - this is simply because

there are "too many" equations.
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� Hansen (1982) proposed a solution to this problem, based on bringing the sample moments as close

to zero as possible. This is achieved by minimizing the quadratic form

min
�

"
NX
i=1

g (wi;�)

#0
� C �

"
NX
i=1

g (wi;�)

#
(1 x L) (L x L) (L x 1)

with respect to the parameters �, where C is a positive de�nite L� L weighting matrix (more on

the latter below). It can be shown that this yields a consistent estimator of �, under certain

regularity conditions (see Theorem 14.1 in Wooldridge, 2002).

� Provided that the moment functions are continuously di¤erentiable, the GMM estimator satis�es

the �rst-order condition

"
NX
i=1

r�g
�
wi; �̂

�#0
� C �

"
NX
i=1

g
�
wi; �̂

�#
= 0; (5.3)

(P x L) (L x L) (L x 1) (P x 1)

where

r�g
�
wi; �̂

�
=

266666666664

@
@�1
g
�
wi; �̂1; �̂2; :::; �̂P

�0
@
@�2
g
�
wi; �̂1; �̂2; :::; �̂P

�0
(:::)

@
@�P

g
�
wi; �̂1; �̂2; :::; �̂P

�0

377777777775
is an L � P vector of derivatives of the moment function g with respect to the �rst, second, etc.

element of the parameter vector �, (remember: g (wi;�) is L� 1, hence L� P ).

� Let�s write this for the linear model that we are familiar with. We have

g (wi;�) = Z
0
i (yi �Xi�) ;
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hence

@

@�1
g (wi; �1; �2; :::; �P ) = �Z 0ix1i (L� 1)

@

@�2
g (wi; �1; �2; :::; �P ) = �Z 0ix2i (L� 1)

(:::)

@

@�P
g (wi; �1; �2; :::; �P ) = �Z 0ixPi (L� 1),

and so

r�g (wi;�) =

�
�Z 0ix1i �Z 0ix2i (:::) �Z 0ixPi

�
= �Z 0iXi:

� The �rst-order condition becomes

"
NX
i=1

Z 0iXi

#0
� C �

"
NX
i=1

Z 0i

�
yi �Xi�̂

�#
= 0:

It follows that

"
NX
i=1

Z 0iXi

#0
� C �

"
NX
i=1

Z 0iyi

#
=

"
NX
i=1

Z 0iXi

#0
� C �

"
NX
i=1

Z 0iXi�̂

#
;

hence the solution for �̂ is

�̂ =

0@" NX
i=1

Z 0iXi

#0
� C �

NX
i=1

Z 0iXi

1A�1 "
NX
i=1

Z 0iXi

#0
� C �

"
NX
i=1

Z 0iyi

#
;

which can be written in data matrices as:

�̂
GMM

=
��
Z 0X

�0 � C �Z 0X��1 �Z 0X�0 � C �Z 0y:
�̂
GMM

=
��
X 0Z

�
� C �

�
Z 0X

���1 �
X 0Z

�
� C �Z 0y:

� This de�nes the GMM estimator for the linear model.

18



� For nonlinear models it is typically not possible to solve for �̂GMM
analytically, in which case

numerical optimization methods can be used to �nd the parameter vector that satis�es the �rst-

order conditions (5.3) (cf. MLE)

� This illustrates the point that the GMM framework is general indeed.
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5.2. The Linear Model: GMM and Conventional Estimators

� We just saw that, for the linear model,

�̂
GMM

=
��
X 0Z

�
� C �

�
Z 0X

���1 �
X 0Z

�
� C �Z 0y:

� Notice that if L = P (just identi�ed) then X 0Z is a square matrix (C is always square), and so

we have ��
X 0Z

�
� C �

�
Z 0X

���1
=
�
Z 0X

��1 � C�1 � �X 0Z
��1

:

The GMM estimator therefore reduces to

�̂
GMM

=
�
Z 0X

��1
Z 0y;

which is the IV estimator (cf. eq (1.3) in lecture 2). So you see the IV estimator �ts in the GMM

framework.

� You also see that in this case the matrix C plays no role.

� Of course, if Z = X ; then the GMM estimator for the linear model coincides with the OLS

estimator:

�̂
GMM

=
�
X 0X

��1
X 0y:

Again, C plays no role.

� In contrast, in the overidenti�ed case (L > P ), the choice of the weight matrix C is important.

I have already announced (without proof) that the GMM estimator is consistent - and this happens

to be true for any C; provided that C is positive de�nite. In other words, if all you are worrying

about is consistency of your estimator, then you can use any matrix you want, as long as it is

positive de�nite.
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� However, the choice of C is nevertheless important, because in �nite samples di¤erent C-matrices

will lead to di¤erent point estimates!

� Consider �rst

C = (Z0Z)
�1
:

We then have

�̂
GMM

=
��
X 0Z

�
� (Z0Z)�1 �

�
Z 0X

���1 �
X 0Z

�
� (Z0Z)�1 �Z 0y;

which is the 2SLS estimator. So the 2SLS estimator can also be cast as a GMM estimator.

� If di¤erent choices of C lead to di¤erent results in practice, you might think this somewhat unsat-

isfactory - two researchers with the same model and same data will report di¤erent results if they

choose di¤erent C-matrices, and both researchers can claim they are using a consistent estimator.

� Fortunately, there is a way of choosing among all the possibilities. It can be shown that, among all

possible candidates for the weight matrix C, the "best" one is the inverse of the covariance of

the moments:

C = [V ar (Z0iui)]
�1 .

This is the "best" choice because this weight matrix produces the GMM estimator with the smallest

variance, asymptotically (see Section 8.3.3 in Wooldridge, 2002). Referring back to the minimization

problem (now written speci�cally for the linear regression model):

min
�

"
NX
i=1

Z0iui

#0
� C �

"
NX
i=1

Z0iui

#
(1 x L) (L x L) (L x 1)

this actually has some intuitive appeal: low-variance moments will be given higher weight in the

criterion function than high-variance moments.
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� The problem is that the inverse of the covariance matrix for the moments (for the population, of

course) is unknown, and so an estimator based on the covariance matrix for the moments in the

population is infeasible.

� The feasible solution is to estimate this covariance matrix using a judicious, pre-speci�ed, choice

for C. Remember any positive de�nite C achieves consistency, and so if I can estimate � consistently

I can also estimate the covariance matrix of the moments consistently.

� This line of reasoning suggests the following 2-step procedure for obtaining a consistent and asymp-

totically e¢ cient GMM estimator (see Wooldridge, 2002, p. 193).

STEP 1: Obtain a "preliminary" GMM estimate of �, denoted ��, using a suitable weight matrix

C1. Typically, the 2SLS estimator is used to produce ��, which, as we have seen, amounts to using

C =
�
Z 0Z

��1
. Then predict the residuals:

�ui = yi �X 0
i
��:

With these in hand, we can now consistently estimate the covariance of the moments:

V âr (Z0iui) � �̂ =
 
N�1

NX
i=1

Z0i�ui�u
0
iZi

!
:

STEP 2: Use the inverse of the covariance of the moments as the weight matrix, and re-estimate the

model to obtain an asymptotically e¢ cient (optimal), and consistent, GMM estimator:

�̂
GMM

=

��
X 0Z

�
�
�
�̂
��1

�
�
Z 0X

���1 �
X 0Z

�
�
�
�̂
��1

�Z 0y: (5.4)

� Student checkpoint: Suppose the residuals are homoskedastic, and suppose you have a linear single-

equation model. What are you gaining by using GMM compared to 2SLS?

� [EXAMPLE: Ivreg2, GMM, optimal weight matrix - section 2 in the appendix.]
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5.3. Why use GMM?

� What are the relative merits of GMM compared to the conventional estimators? That is, why would

you ever use GMM? Let me now try to shed some light on this.1 I focus on the linear regression

model only.

� First, as should be clear now, if the moments we are using are of the form

E (Z0iui) = 0;

and the model is exactly identi�ed, the GMM estimator coincides with the IV estimator (or, if

Z = X, with OLS). Hence, there can be no advantages to using GMM for the linear model in the

exactly identi�ed case.

� For overidenti�ed models, we have seen that the GMM estimator is asymptotically e¢ cient if the

weight matrix is optimal:

�̂
GMM

=

��
X 0Z

�
�
�
�̂
��1

�
�
Z 0X

���1 �
X 0Z

�
�
�
�̂
��1

�Z 0y;

with

� = E (Z0iuiu
0
iZi) :

However, if the error term is homoskedastic (and, if there is a time dimension in the data, non-

autocorrelated), this reduces to

� = �2uE (Z
0
iZi) ;

and so once we replace E (Z0iZi) by N
�1PN

i=1 Z
0
iZi we get the 2SLS estimator. So in that case

(homoskedasticity) also there is no reason to "use GMM" rather than 2SLS (since they are the

same).

1See Wooldridge, J.M. (2001) Applications of Generalized Method Moments Estimation, Journal of Economic Perspec-
tives 15:4, pp.87-100.
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� It follows from the above that GMM will be an improvement over 2SLS if N�1PN
i=1 Z

0
iZi is not

the the optimal weight matrix.

� If there is heteroskedasticity, for example, the covariance of the moments is not �2uE (Z0iZi), and

so 2SLS is not asymptotically e¢ cient. By estimating the covariance of the moments in the �rst

step and then computing the weight matrix as �̂ =
�
N�1PN

i=1 Z
0
i�ui�u

0
iZi

�
we can expect the GMM

estimator to be more e¢ cient than 2SLS.

� Similarly, in time series applications in which there is serial correlation in the error terms, the

covariance of the moments is not �2uE (Z
0
tZt). Calculating the covariance matrix of the moments

from the data based on an initial estimator, and using that to form the weight matrix, may thus

be more e¢ cient than doing 2SLS.

� Whenever one estimates a system of equations, the bene�ts of GMM estimation become more

apparent. We will see that when studying the Arellano-Bond (1991) and Blundell-Bond (1998)

models for dynamic panel data models.

Potential drawbacks:

� De�nition of the weight matrix for the �rst step is arbitrary, and di¤erent choices will lead to

di¤erent point estimates in the second step

�One possible remedy is to not stop after two iterations, but continue to update the weight

matrix until some sort of convergence has been achieved. This estimator can be obtained by

using the cue (continuously updated estimators) options within ivreg2

� Inference problems because the optimal weight matrix is estimated. This can lead to sometimes

severe downward bias in the estimated standard errors for the GMM estimator - see for example

the Monte Carlo evidence reported by Arellano and Bond (1991).

�Frank Windmeijer has proposed a method that appears to work well however. This is not
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available (I think) in ivreg2, but it is available in xtabond2. We will return to this in the

lectures on dynamic panel data models.
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6. Variance and E¢ ciency

6.1. Variance of the 2SLS estimator

Recall the de�nition of the 2SLS-estimator:

�̂
2SLS

=
�
X 0Z

�
Z 0Z

��1
Z 0X

��1
X 0Z

�
Z 0Z

��1
Z 0Y

�̂
2SLS

=
�
X 0P zX

��1
X 0P zY

where P z = Z
�
Z 0Z

��1
Z 0 is the projection matrix. Under homoskedasticity (constant variance of the

error term), the covariance matrix has the same form as OLS, but in terms of predicted values:

Avâr
�
�̂
2SLS

�
= �̂2

�
X̂
0
X̂
��1

:

Recall:

X̂ = Z
�
Z 0Z

��1
Z 0X

(OLS formula applied to the �rst stage), thus

X̂
0
X̂ = X0Z

�
Z0Z

��1
Z0Z

�
Z0Z

��1
Z0X;

i.e.

X̂
0
X̂ = X0Z

�
Z0Z

��1
Z0X

hence

Avâr
�
�̂
2SLS

�
= �̂2

�
X 0Z

�
Z 0Z

��1
Z 0X

��1
; (6.1)

where

�̂2 = (N �K)�1 û0û;
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and

û = Y �X �̂
2SLS

;

is the N � 1 column vector of estimated residuals. Notice that these residuals are not the residuals from

the second-stage OLS regression of the dependent variable Y on the predicted variables of X.

You might not think the variance formula above terribly enlightening. Some intuition can be gained

by returning to the single-regressor single-instrument model

y = �1 + �2x2 + u;

x = �1 + �2z2 + r:

The variance of �̂
IV

2 then simpli�es to

Avâr
�
�̂
IV

2

�
= �̂2

 P
i (~z2i)

2P
i (~x2i~z2i)

2

!

Avâr
�
�̂
IV

2

�
= �̂2

1

N

X
i

(~z2i)
2

N

�
NP

i (~x2i~z2i)

�2
Avâr

�
�̂
IV

2

�
= �̂2

1

N

�2z

cov (x2i; z2i)
2

Avâr
�
�̂
IV

2

�
= �̂2

1

N�2xz�
2
x

;

where I have sample-demeaned the variables to eliminate the constants, and �xz = cov (z2i; x2i) = (�z�x)

is the correlation between x2 and z2.

Now notice the following:

� Just like the OLS estimator, the variance of the IV estimator decreases to zero at a rate of (1=N).

� Just like the OLS estimator, the variance of the IV estimator falls, as the variance of the explanatory

variable increases; and increases as the variance of the residual increases.

� It is now obvious why the assumption that the instrument is correlated with the explanatory variable

is crucial: as �xz tends to zero, the variance will tend to in�nity.
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� It�s also obvious why your standard errors rise as a result of using instruments (compared to OLS)

- since OLS amounts to using x as an instrument for itself, thus resulting in �2xz = 1; whenever x

and z are not perfectly correlated, the variance will be higher.

Heteroskedasticity-Robust Inference for 2SLS. If the error term is heteroskedastic, issues similar

to those for OLS emerge for 2SLS:

� The 2SLS estimator is no longer asymptotically e¢ cient (but it remains consistent),

� The variance formula (6.1) is no longer valid.

The two most common ways of guarding against heteroskedasticity are:

1. Use a heteroskedasticity-robust estimator of the variance matrix:

AvârROBUST

�
�̂
2SLS

�
=
�
X̂
0
X̂
��1 NX

i=1

û2i x̂
0
ix̂i

!�
X̂
0
X̂
��1

:

Notice how similar this is to the robust variance estimator for OLS. Stata reports standard errors

based on this estimator if you add �robust�as an option in ivreg2.

2. Use a Generalized Method of Moments (GMM) estimator.

[EXAMPLE: The Card (1995) data - Section 3 in the appendix.]
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6.2. Variance of the GMM estimator

� Suppose that our weight matrix C is "optimal" (asymptotically e¢ cient), thus constructed as the

inverse of the covariance of the moments:

C = [V ar (Z0iui)]
�1 .

In practice, we estimate this as follows:

V âr (Z0iui) � �̂ =
 
N�1

NX
i=1

Z0i�ui�u
0
iZi

!
:

where the �ui are the residuals from the �rst step (preliminary estimator).

� For the linear model we have

�̂
GMM

=

��
X 0Z

�
�
�
�̂
��1

�
�
Z 0X

���1 �
X 0Z

�
�
�
�̂
��1

�Z 0y:

� The formula for the variance of �̂GMM
is relatively straightforward, namely:

V
�
�̂
GMM

�
=

24" NX
i=1

r�g
�
wi; �̂

�#0 �
�̂
��1 " NX

i=1

r�g
�
wi; �̂

�#35�1 ;
in general (check Wooldridge, pp. 423-424 for its origins) which reduces to

V
�
�̂
GMM

�
=

��
X 0Z

� �
�̂
��1 �

Z 0X
���1

;

for the linear model.

� An important issue in �nite samples: This formula is derived under the assumption that the weight

matrix is non-stochastic. In practice, the weight matrix is actually �noisy�, since the residuals in the

�rst stage are a¤ected by sampling error. The upshot is that step 2 standard errors tend to be too
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good. Methods now exist that enable you to correct for sampling error in the �rst step (e.g. the

Windmeijer procedure, commonly used these days when estimating dynamic panel data models).
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7. Testing for exogeneity and validity of overidentifying restrictions

Reference: Wooldridge (2002), Chapter 6.

Whenever we use instrumental variables techniques we should carry out tests for exogeneity and for

the validity of the overidentifying restrictions.

7.1. Testing for exogeneity: 2SLS

� The main reason for using 2SLS or GMM is that we suspect that one or several of the explanatory

variables are endogenous. If endogeneity is in fact not a problem, your instrumental variable

estimator will be consistent (provided, of course, that the instruments are valid and relevant),

but ine¢ cient (i.e. higher variance than for OLS, given that OLS is valid). Therefore it is good

practice to test for exogeneity. If we can accept the hypothesis that the explanatory variables are

uncorrelated with the residual we are better o¤ relying on OLS.

� Consider the model

y1 = z1�1 + �1y2 + u1;

where z1 is a (1� L1) vector of exogenous variables (including a constant), �1 is (L1 � 1), and u1

is the error term. The variable y2 is potentially endogenous. I further assume that a set of (valid

and relevant) instruments are available, so that

E (z0u) = 0

holds by assumption, where z contains all the exogenous explanatory variables in the structural

equation z1 and at least one instrument.

We are not sure if y2 is endogenous or exogenous. If it is endogenous, we have

E (y02u) 6= 0;
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and I would identify the model relying on E (z0u) = 0 only. However, if y2 is really exogenous, then one

additional moment condition becomes available to me, namely

E (y02u) = 0:

In that case OLS will be �ne. The null hypothesis, then, is that y2 is exogenous.

H0 : E (y
0
2u) = 0.

There are several ways of carrying out a test like this in practice.

7.1.1. The original Hausman (1978) test

Hausman (1978) proposed a test for exogeneity based on a comparison of the OLS and 2SLS estimators

of �1 =
�
�01; �1

�0
. The general idea is very intuitive: if y2 is in fact exogenous, then OLS and 2SLS

estimators should di¤er only because of sampling error - i.e. they should not give signi�cantly di¤erent

results. Hausman showed that, under the null hypothesis, the test statistic

H =
�
�̂
OLS

1 � �̂2SLS1

�0 h
Avâr

�
�̂
2SLS � �̂OLS1

�i�1 �
�̂
OLS

1 � �̂2SLS1

�

follows a Chi-squared distribution where the number of degrees of freedom equals the number of explana-

tory variables in the model. Notice the quadratic form of this expression. A complication here is posed

by the calculation of Avâr
�
�̂
2SLS

1 � �̂OLS1

�
: Hausman showed, however, that, asymptotically,

Avâr
�
�̂
2SLS

1 � �̂OLS1

�
= Avâr

�
�̂
2SLS

1

�
�Avâr

�
�̂
OLS

1

�
;

which is very useful. Hence, in practice the Hausman statistic is given by

H =
�
�̂
OLS

1 � �̂2SLS1

�0 h
Avâr

�
�̂
2SLS

1

�
�Avâr

�
�̂
OLS

1

�i�1 �
�̂
OLS

1 � �̂2SLS1

�
:
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Unfortunately, this particular test often proves problematic to use. The main problem is that, in small

samples, there is no guarantee that Avâr
�
�̂
2SLS

1

�
> Avâr

�
�̂
OLS

1

�
. Clearly, if that happens we obtain

a negative test statistic, which is very hard to interpret given that H is non-negative in theory (follows

a Chi-squared distribution under the null).

7.1.2. A regression-based Hausman test

Hausman has also derived a regression-based form of the test just outlined, that is less awkward to use

in practice. This test, which is asymptotically equivalent to the original form of the Hausman test, is

very general and very easy to implement in practice. To motivate this test, consider the reduced form

equation (�rst stage):

y2 = z� + v2;

where z is uncorrelated with v2 by de�nition; and the structural equation

y1 = z1�1 + �1y2 + u1;

where u1 is uncorrelated with z, by assumption. Now think about the implications of y2 being either i)

exogenous or ii) endogenous.

� If y2 is exogenous, i.e. E (y2u1) = 0, then itmust be that E (v2u1) = 0, given that z is uncorrelated

with v2 and u1 (otherwise y2 would be correlated with u1)

� If y2 is endogenous, i.e. E (y2u1) 6= 0, then it must be that E (v2u1) 6= 0, given that z is uncorre-

lated with v2 and u1 (there is no other way y2 can be correlated with u1).

It is thus clear that our exogeneity test can be formulated as

H0 : E (v2u1) = 0;
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i.e. the null hypothesis is that the two residuals are uncorrelated. Now write the linear projection of the

residual u1 on the reduced form error u2:

u1 = �1v2 + �1:

This implies E (v2; u1) = �1�
2
v, hence we can rewrite the null hypothesis of exogeneity as

H0 : �1 = 0:

Thus, y2 is exogenous if and only if �1 = 0. To see how this is useful from an applied point of view, now

replace u1 by �1v2 + �1 in the structural equation:

y1 = z1�1 + �1y2 + �1v2 + �1:

Of course, v2 is not directly observed, but it can be estimated from the reduced form equation:

v̂2 = y2 � z�̂;

and we can then run the structural regression

y1 = z1�1 + �1y2 + �1v̂2 + error; (7.1)

using OLS (note!) and actual, not predicted, y2. The exogeneity test can now be done as a simple

t-test of the null that �1 = 0. A heteroskedasticity-robust t-test can be used if you suspect there is

heteroskedasticity under the null. Incidentally, this gives estimates of the parameters �1,�1 that are

numerically identical to 2SLS - as we shall see later in this course, this is quite useful. There is one minor

issue though: the OLS standard errors associated with (7.1) are valid under the null that �1 = 0; but

not under the alternative that �1 6= 0: In the latter case, the conventional standard errors are downward
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biased. One implication of this is that, if you do not reject the null hypothesis based on standard errors

that are possibly too low, you certainly wouldn�t do so based on the correct standard errors.
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7.2. Testing for validity of overidentifying restrictions: 2SLS

� In an exactly identi�ed model we cannot test the hypothesis that the instrument is valid, i.e. that

the exclusion restriction is a valid one. In that case, the assumption that the instrument is valid will

essentially have to be taken on faith - i.e. you have to believe the theoretical arguments underlying

the exclusion restriction.2

� If our model is overidenti�ed, we can test for the validity of the overidentifying restrictions.

Please note that this is not a test of the hypothesis that "the instruments are valid". Rather, it is

as follows:

�Under the assumption - which we can�t test - that G1 instruments are valid with certainty,

where G1 is the number of endogenous explanatory variables, we can test the null hypoth-

esis that the Q1 = L2 � G1 overidentifying instruments (where L2 is the total number of

instruments) are orthogonal to the residual in the structural equation.

� So what�s the point of considering this test, then, given that it does not shed light on the issue that

we are interested in (which is instrument validity, in general)? You can view the OVERID test as

a �rst hurdle that needs to be overcome in the context of IV estimation, in the following sense:

� If the OVERID test indicates you should reject the null hypothesis, then this is pretty clear

evidence your model is mis-speci�ed. You then have no choice but to respecify the model. When

doing so, think carefully about the implications of the test outcome. Whenever the OVERID

test implies rejection of the null, this usually means at least one of the instruments would have a

2To see the intuition of why we cannot test for the validity of this assumption, consider the exactly identi�ed model

y1 = �0 + �1y2 + u1;

y2 = �0 + �1z1 + v2:

Express the structural equation as a function of the predicted value of Y2:

y1 = �0 + �1 (�̂0 + �̂1z1) + u1

= (�0 + �1�̂0) + �1 (�̂1Z1) + u1:

We cannot test the hypothesis cov (z1; u1) = 0, simply because u1 is not observed and, without further information, we
cannot obtain an estimate of u1 unless we assume cov (z1; u1) = 0: That is, the estimate of u1 will be uncorrelated with z1
by construction.
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signi�cant e¤ect in the structural equation. Think about the economics of that. For example, if

you are instrumenting education with distance to primary school at the age of seven, and mother�s

education, you might think mother�s education is a dubious instrument as it may be correlated with

unobserved ability. So the next step could be to re-estimate the model without mother�s education

in the instrument set.

� If the OVERID test suggests you should accept the null hypothesis, then what to make of this

depends largely on the faith you have in your instruments in general. If you are almost certain

that G1 instruments are valid, then you might be inclined to conclude that the model passing the

OVERID test means that all your instruments are valid (perhaps some of your instruments are less

credible than others, in which case this might be useful knowledge).

Intuition of the OVERID test. Suppose the model is

y2 = �0 + �1z1 + �2z2 + v2

y1 = �0 + �1y2 + u1;

which is overidenti�ed. We know we can obtain IV estimates of the structural equation here by using

only z1 as an instrument. Because in that case z2 is not used in the estimation, we can check whether

z2 and the estimated residual û1 are correlated. If they are, then z2 would not be a valid instrument,

under the assumption that z1 is a valid instrument (we need this assumption, otherwise the model is not

identi�ed of course).

Clearly we can then reverse the roles of z1 and z2 and examine whether z1 is uncorrelated with û1 if

z2 is used as an instrument.

Which test should we use? It turns out that this choice does not matter. Remembering that, in this

case, the validity of at least one IV must be taken on faith.
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Mechanics of the basic OVERID test for 2SLS. Such a test can be carried out as follows:

1. Estimate the structural equation with 2SLS / IV and obtain the estimated residuals û1:

2. Regress û1 on all exogenous variables (in the example above, z1 and z2). Obtain the R-squared.

3. Under the null hypothesis that the instruments are uncorrelated with u1, the statistic N�R2 follows

a chi-squared distribution with Q1 degrees of freedom. If N �R2 exceeds the relevant critical value

then we conclude that some of the instruments are not uncorrelated with u1, in which case they

are not valid instruments.

There is an equivalent way of carrying out the OVERID test, which is based on the criterion func-

tion that is (implicitly) being minimized to yield the 2SLS results. This relates directly to the GMM

framework. Let�s turn to this now.
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7.3. Speci�cation Tests with GMM

� GMM estimation o¤ers a very general method for speci�cation testing, based on the minimized value

of the criterion function with and without the restrictions imposed There is a strong similarity

between this criterion based test and the log likelihood ratio test after maximum likelihood

estimation (more on MLE later in the course). The approach is as follows.

� Suppose that we have obtained the optimal GMM estimator �̂
GMM

de�ned in (5.4). This may be

your unrestrictive estimator, or your restrictive estimator, depending on what you are doing.

� Suppose you want to investigate whether you�re �allowed�to rely on a more restrictive model, nested

in your current model (e.g. one where you omit a sub-set of the explanatory variables).

� In this case your current model is the unrestrictive estimator.

� Now impose Q restrictions on the original model, and re-estimate the parameters using GMM with

those restrictions imposed. Use the same set of instruments and the same weight matrix as for the

unrestricted model. Refer to this as the restrictive estimator, denoted �̂
GMM

R .

� Now suppose we want to test whether the restrictions imposed underlying �̂GMM

R are valid ones.

This we can easily do by comparing the values of the criterion function for �̂
GMM

and �̂
GMM

R . It

can be shown that, under the null hypothesis that the restrictions are valid, the GMM distance

statistic is distributed as chi-square with degrees of freedom equal to the number of restrictions

imposed on the general model (i.e. Q):

J =

24 NX
i=1

Z 0iûi(R)

!0
Ĉ2

 
NX
i=1

Z 0iûi(R)

!
�
 

NX
i=1

Z 0iûi

!0
Ĉ2

 
NX
i=1

Z 0iûi

!35 =N � �2Q; (7.2)

where

ûi(R) = yi �Xi�̂
GMM

R ;
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is the vector of residuals based on the restrictive model, and

ûi = yi �Xi�̂
GMM

;

is the vector of residuals based on the unrestrictive model.

� Because constrained optimization (i.e. minimization subject to the Q restrictions imposed) cannot

result in a smaller objective function than unconstrained minimization, equation (7.2) is always

nonnegative, and usually strictly positive.

� This approach can be used to test for exogeneity and the validity of overidentifying restrictions, as

well as for exogeneity (among other things).

7.3.1. Testing for exogeneity

� Suppose we suspect that some of the explanatory variables are endogenous - for convenience the

last p columns in Xi:

� In this case, the unrestrictive model does not use the p moment conditions

E
h
�X
0
i (yi �Xi�o)

i
= 0; (7.3)

where �X
0
i are the dubious instruments, whereas the restrictive model does use them (it�s re-

strictive because it imposes the restriction that these potentially endogenous variables are in fact

exogenous, i.e. orthogonal to the residual).

� Hence, we can test for exogeneity by comparing criterion values with and without the "dubious"

moments (7.3) using the distance statistic (7.2).

� EXAMPLE: OVERID restrictions and exogeneity - see appendix.
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7.3.2. Testing validity of overidentifying restrictions

� Suppose we have more instruments than explanatory variables. How can we use the approach above

to test for the validity of the overidentifying restrictions? In particular, what does the unrestrictive

and restrictive models look like?

� Clearly the fact that we have more instruments than explanatory variables implies restrictions: we

are imposing the restrictions that Q = L�P > 0 variables do not belong in the structural equation.

So this model is the restrictive model.

� Now consider relaxing that restriction, by adding Q instruments to the set of explanatory variables

in the model (remember, we can�t add all the instruments, as you need as many exclusion restrictions

as there are endogenous explanatory variables to identify the model). That model, clearly, would

be exactly identi�ed. Now, we know that in the exactly identi�ed case all sample moments hold

exactly:

N�1

 
NX
i=1

Z 0iûi(R)

!
= 0;

and so the criterion value of the unrestrictive model is exactly zero.

� This implies that if the null hypothesis is that the overidentifying restrictions are valid, the test

statistic reduces to

J =

 
NX
i=1

Z 0iûi(R)

!0
Ĉ2

 
NX
i=1

Z 0iûi(R)

!
=N � �2Q:

Notice that this is simply the minimized value of the criterion function for the overidenti�ed model.
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8. Discussion: Using IV in practice

Reference: Murray, Michael P.(2006) "Avoiding Invalid Instruments and Coping with Weak Instruments,"

Journal of Economic Perspectives, 2006, vol. 20, issue 4, pages 111-132

� The survey paper by Murray (2006) is an excellent survey paper on the instrumental variable

estimator, stressing intuition and implications rather than technicalities.

� He begins by discussing some studies using instruments to identify causal e¤ects. He then asks:

should instrumental variable be thought of as a panacea (a cure for all diseases)? He argues not.

Two reasons:

� Instruments may be invalid. This would result in inconsistent estimates and possibly greater

bias than for OLS. Indeed, since you can never be certain that your instruments are valid,

there�s a "dark cloud of invalidity" hanging overhead all instruments when they are arrive on

the scene.

� Instruments may be so weakly correlated with the endogenous explanatory variables (referred

to as �troublesome�variables in the paper) that in practice it�s not possible to overcome the

bias of the OLS estimator. Weak instruments lead to bias, and misleading inference (common

result: standard errors far too low), in instrumental variable estimation.
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8.1. Supporting an instrument�s validity

In order to chase away the dark cloud of instrument invalidity, you need to use economic arguments

combined with statistical analysis.

1. You need to advance theoretical arguments as to why your instruments are valid ones. A very

common view in the profession is that how much credence should be granted to IV studies depends

to a large extent on the quality of the arguments in support of the instruments�validity. You will

see a good example of this in the Miguel et al. paper (Lab 1).

2. Test for the validity of overidentifying restrictions. Of course, to have maximum faith in such a

test you need to know with certainty that an exactly identifying subset of the instruments are

valid. In practice, typically you don�t know. But if you�re using di¤erent instruments with di¤erent

rationales, so that one might be valid while the other is not, then your audience will have more

faith in the instruments if the OVERID test is passed. If your instruments are basically variants

on the same theme - e.g. all measures of institutional quality - then it seems more unlikely that

some can be valid whilst others are not. In any case, what you�re de�nitely not allowed to do is

say, because the OVERID restrictions look valid, that "the instruments are valid". You can never

be sure.

3. Be diligent about omitted variables. Omitted variables bias is a relevant concern in the context of

IV estimation - but in a somewhat di¤erent form, compared to OLS. In particular, IV estimation

is biased if an omitted relevant variable is correlated either with the included non-endogenous

explanatory variables (X) or the instrumental variables (Z). So there are good reasons for adding

control variables, even if you�re estimating with instrumental variables. With panel data we may

want to control for �xed e¤ects, for example.

4. Use alternative instruments (rotate the instruments). This in the spirit of the OVERID test. If

you have many instruments, then try adding them one by one and check if your results are robust.

If parameter estimates vary a lot depending on which instruments are being used, this would be a
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sign that not all your instruments are valid.
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8.2. Coping with weak instruments

Estimation and inference with weak instruments - instruments only weakly correlated with the endogenous

variables - is an area of active research. Some of the theoretical arguments are rather technical, but the

main points are pretty straightforward. Let�s start by looking at some straightforward results.

Weak instruments imply high variance: We have seen that if the instruments and the endogenous

regressor(s) are only weakly correlated, the variance of the IV estimator can be rather high - recall that,

in the single-regressor single-instrument model:

Avâr
�
�̂
IV

1

�
= �̂2

1

N�2xz�
2
x

:

Weak instruments exacerbate the bias caused by invalid instruments: Another implication

of weak instruments is that the IV estimate may be quite badly inconsistent even as the sample size tends

to in�nity. To see this, recall that

p lim �̂
IV

1 = �1 + p lim
1
N

PN
i=1 (zi � �z)ui

1
N

PN
i=1 (zi � �z) (xi � �x)

;

p lim �̂
IV

1 = �1 +
cov (zi; ui)

cov (zi; xi)
;

p lim �̂
IV

1 = �1 +
corr (zi; ui)

corr (zi; xi)

�u
�x
:

Clearly, the inconsistency in the IV estimator can be large if corr (zi; ui) 6= 0 and corr (zi; xi) is relatively

small.

� Student checkpoint : Show that the OLS estimator will have smaller asymptotic bias than the 2SLS

estimator whenever

corr (xi; ui) <
corr (xi; ui)

corr (zi; xi)
:

Clearly, if zi and xi are not correlated at all and corr (zi; ui) 6= 0, the asymptotic bias of the IV

estimator tends to in�nity. Thus it is important to establish whether zi and xi are correlated or not.
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Weak instruments lead to small sample bias, even if corr (zi; ui) = 0 in the population:

� A much more subtle point than those raised above is that, even if corr (zi; ui) = 0 in the population

(so that the instrument is valid) it is now well understood that instrumental variable methods can

give very misleading results - biased parameter estimates, downward biased standard errors - in

small samples.

� Problems can become particularly serious if we have

�Weak instruments; and/or

�Many instruments (large number of overidentifying restrictions)

� You might think having a large sample solves these problems, but that is not necessarily the

case. Angrist and Krueger (1991) used more than 300,000 observations to estimate the returns

to education, but because they used a very large number of instruments, some of the inference

reported in that paper is not reliable, as shown by Bound, Jaeger and Baker (1996). So the issue

is not sample size, but how informative your data are.

[EXAMPLE on small sample & strong instruments vs. large sample & weak instruments - section 4

in the appendix.]

� When instruments are only weakly correlated with the endogenous explanatory variable(s), two

serious problems emerge:

1. Biased parameter estimates: Even though 2SLS estimates are consistent (i.e. they almost certainly

approach the true value as N goes to in�nity), the estimates are always biased in �nate samples.

When the instruments are weak, this bias can be large - even in large samples.

2. Biased standard errors: When the instruments are weak, 2SLS standard errors tend to become too

small - i.e. you�d reject the null too often.

The combination of these problems is disturbing: the mid-point of your con�dence interval is in the

wrong place, and the width of the con�dence interval is too narrow.
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[EXAMPLE. Results from a simulation based on a model with many instruments, all of which are

uninformative (irrelevant) - section 5 in the appendix].

� There is now quite a large literature on the implications of weak/many instruments for inference.

This literature is fairly technical. Practitioners need to be aware of the pitfalls however. ivreg2

produces several tests that shed light on whether weak instruments are likely to be a problem in

practice. Murray (2006) provides a useful discussion. The rest of this section draws heavily on his

exposition.

Biased parameter estimates. Here�s an argument that should make it immediately obvious to

you that 2SLS can be biased in �nite samples: suppose you have one endogenous regressor, and suppose

the number of instruments is equal to the number of observations. In this case the �rst stage regression

will result in R2 = 1, and the predicted value of the endogenous variable in the �rst stage will coincide

with the actual value. Your 2SLS estimator coincides exactly with the OLS estimator (the one you were

suspicious of in the �rst place).

We can be a bit more precise. Consider the following simple model:

Y1i = �0 + �1Y2i + "i;

Y2i = �0 + Zi�1 + �i;

where V ar ("i) = V ar (�i) = 1 for convenience.

The explanatory variable Y2i is endogenous if corr ("; �) 6= 0. De�ne � = corr ("; �).

Hahn and Hausman (2005) show that, for this speci�cation, the �nite-sample bias of 2SLS for the

overidenti�ed model (l > 1), where l is the number of instruments in the Zi vector, can be written

E
h
�̂1;2SLS � �1

i
�
l�
�
1�R2

�
nR2

;
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where R2 is the R-squared from the �rst stage, and n is the number of observations.3

� Key insight: The bias rises with three factors -

�The number of instruments used

�The correlation between the residuals (strength of endogeneity)

�Weakness of the instruments (weak instruments !low R2 in the �rst stage).

� Clearly these problems will be more severe in small samples.

� Recall that adding instruments might be thought a good idea on the grounds that standard errors

decrease. Now you see there is a cost associated with that, in terms of bias. Note in particular that

this cost will be high if the instruments are weak - why?

� Example: Suppose l = 15; � = 0:5; R2 = 0:20; n = 200, �1 = 1. In this case, we would have

E
h
�̂1;2SLS � �1

i
� 15� 0:5� 0:8

200� 0:2 = 0:15;

i.e. a bias of 15%.

� Student checkpoint: Can you derive the bias in the OLS estimator for this model? How do the 2SLS

and OLS estimators compare, in terms of bias? Can OLS ever be less biased? This is a fundamental

question - the whole point of using 2SLS is to reduce the bias produced by OLS.

� Student task (optional - but should be fun): Can you write a Stata program that computes the bias

above by means of simulations? Are the simulations results consistent with the analytical formula?

� I will now partly reveal the answer to the question set above: yes, if the instruments are too weak

and/or too many, then the 2SLS estimator may be more biased than the OLS estimator.

3To derive this formula you need to know a few matrix tricks. Check out
http://web.mit.edu/g�scher/www/Downloads/Metrics383/383-7-Finite.pdf for a very detailed (handwritten) exposition.
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� Stock and Yogo (2005) provide a formal test for when an IV is "too weak" to be trustworthy. The

null hypothesis in this test is that bias of 2SLS is some fraction of the bias of OLS (e.g. less than

10%).

� In the simplest case where there�s just one endogenous explanatory variable, the key test statistic

is the F-statistic in the �rst stage (with non-standard critical values, however).

Biased standard-error estimates.

� The estimated variance of 2SLS is generally biased downward in �nite samples - and the bias can

become large when the instruments are weak. This means that you will tend to reject the null

hypothesis too often if you rely on the 2SLS standard errors.

� Stock and Yogo (2005) proposed a test of the null hypothesis that the true signi�cance of hypothesis

tests about the endogenous regressor�s coe¢ cient is smaller than 10% (and 15,20,25%) when the

usually stated signi�cance level is 5%. Such tests are reported by ivreg2. Clearly, if your test

statistic is lower than, say, 25% maximal IV size, then your standard errors are very unreliable

(strongly downward biased).
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PhD Programme: Applied Econometrics 
Department of Economics, University of Gothenburg 
Appendix Lecture 2 
 
Måns Söderbom 
 
 
Instrumental Variable Estimation in Stata 
 
I will use the Stata command ivreg2, which has been developed by Stata users (not Stata Corp.). 
If this command is not already on your computer, you should be able to install it by typing  
 
ssc install ivreg2 
 
in the Stata command window. 
 
In version 10 of Stata, the command ivregress is available, which is similar to ivreg2 (though not 
quite as comprehensive). Older versions of Stata have the command ivreg, which is a little bit too 
limited for our purposes.  
 
1.  Earnings and education in Kenya 
We now revisit the basic earnings model for Kenyan workers (see section 1 in the appendix to the 
lecture 1 notes): 
 

iii residualedlw +⋅+= 10 ββ . 
 
We suspect that education is endogenous because it is correlated with unobserved ability, the 
latter being part of the residual. To address this problem, we use data on the distance to primary 
school for the individual when s/he was seven years old. The idea is that distance to school is 
uncorrelated with unobserved ability, but correlated with education (since distance affects the 
cost of going to school), hence fulfilling the validity and relevance conditions  More precisely, 
the instrument is a dummy variable = 1 if the individual lived more than 6 km from the nearest 
primary school at the age of seven. This dummy is denoted gt6km. 
 
Summary statistics are as follows: 
 
. tabstat lw ed gt6km, s(mean N min max p50); 
 
   stats |        lw        ed     gt6km 
---------+------------------------------ 
    mean |  4.205216  9.933684  .0905263 
       N |       950       950       950 
     min |  2.227541         0         0 
     max |  8.134265        17         1 
     p50 |  4.019301        11         0 
---------------------------------------- 
 
 
 
  



2 
 

While we are suspicious of the OLS estimator in this context, this is usually a good place to start. 
One reason is that it gives us potentially interesting descriptive statistics (e.g. the correlation 
between lw and ed is given by the square root of the R-squared). Another reason is that it is often 
useful to have a benchmark estimator with which we can compare the IV estimates. So here are 
the OLS estimates, obtained by means of Stata:  
 
. reg lw ed ; 
 
      Source |       SS       df       MS              Number of obs =     950 
-------------+------------------------------           F(  1,   948) =  181.38 
       Model |  84.4673729     1  84.4673729           Prob > F      =  0.0000 
    Residual |   441.47884   948  .465694979           R-squared     =  0.1606 
-------------+------------------------------           Adj R-squared =  0.1597 
       Total |  525.946213   949  .554210973           Root MSE      =  .68242 
 
------------------------------------------------------------------------------ 
          lw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          ed |   .1042316   .0077394    13.47   0.000     .0890433    .1194198 
       _cons |   3.169813   .0800051    39.62   0.000     3.012805     3.32682 
------------------------------------------------------------------------------ 
 
 
 
Thus, if you believe education is exogenous, you would learn from this regression that the return 
to an additional year of schooling is about 10%, with a pretty tight confidence interval (between 
9% and 12%). 
 
Now consider the IV estimator. We see from the summary statistics that only 9% of the 
individuals (i.e. some 90 individuals in the sample) lived more than 6km from a primary school at 
the age of seven. We might worry that the instrument is not going to be particularly informative 
(relevant). ivreg2 reports a rich set of statistics that help us assess whether the key conditions 
required for identification are fulfilled. At this point, don't worry if you don't understand all the 
output produced by ivreg2.  
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. ivreg2 lw (ed=gt6km), first; 
 
First-stage regressions 
----------------------- 
 
First-stage regression of ed: 
 
OLS estimation 
-------------- 
 
Estimates efficient for homoskedasticity only 
Statistics consistent for homoskedasticity only 
 
                                                      Number of obs =      950 
                                                      F(  1,   948) =     6.69 
                                                      Prob > F      =   0.0098 
Total (centered) SS     =  7774.822105                Centered R2   =   0.0070 
Total (uncentered) SS   =       101519                Uncentered R2 =   0.9240 
Residual SS             =  7720.309647                Root MSE      =    2.854 
 
------------------------------------------------------------------------------ 
          ed |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       gt6km |  -.8348407   .3226777    -2.59   0.010    -1.468086   -.2015956 
       _cons |   10.00926   .0970859   103.10   0.000     9.818731    10.19979 
------------------------------------------------------------------------------ 
Included instruments: gt6km 
------------------------------------------------------------------------------ 
Partial R-squared of excluded instruments:   0.0070 
Test of excluded instruments: 
  F(  1,   948) =     6.69 
  Prob > F      =   0.0098 
 
 
 
Summary results for first-stage regressions 
------------------------------------------- 
 
Variable    | Shea Partial R2 |   Partial R2    |  F(  1,   948)    P-value 
ed          |     0.0070      |     0.0070      |        6.69       0.0098 
 
Underidentification tests 
Ho: matrix of reduced form coefficients has rank=K1-1 (underidentified) 
Ha: matrix has rank=K1 (identified) 
Anderson canon. corr. N*CCEV LM statistic   Chi-sq(1)=6.66     P-val=0.0099 
Cragg-Donald N*CDEV Wald statistic          Chi-sq(1)=6.71     P-val=0.0096 
 
Weak identification test 
Ho: equation is weakly identified 
Cragg-Donald Wald F-statistic                       6.69 
See main output for Cragg-Donald weak id test critical values 
 
Weak-instrument-robust inference 
Tests of joint significance of endogenous regressors B1 in main equation 
Ho: B1=0 and overidentifying restrictions are valid 
Anderson-Rubin Wald test     F(1,948)= 2.00      P-val=0.1579 
Anderson-Rubin Wald test     Chi-sq(1)=2.00      P-val=0.1572 
Stock-Wright LM S statistic  Chi-sq(1)=2.00      P-val=0.1576 
 
Number of observations               N  =        950 
Number of regressors                 K  =          2 
Number of instruments                L  =          2 
Number of excluded instruments       L1 =          1 
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IV (2SLS) estimation 
-------------------- 
 
Estimates efficient for homoskedasticity only 
Statistics consistent for homoskedasticity only 
 
                                                      Number of obs =      950 
                                                      F(  1,   948) =     2.31 
                                                      Prob > F      =   0.1285 
Total (centered) SS     =  525.9462132                Centered R2   =   0.1391 
Total (uncentered) SS   =  17325.59593                Uncentered R2 =   0.9739 
Residual SS             =  452.8115283                Root MSE      =    .6904 
 
------------------------------------------------------------------------------ 
          lw |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          ed |   .1424103   .0935081     1.52   0.128    -.0408622    .3256827 
       _cons |   2.790557   .9291496     3.00   0.003     .9694576    4.611657 
------------------------------------------------------------------------------ 
Underidentification test (Anderson canon. corr. LM statistic):           6.661 
                                                   Chi-sq(1) P-val =    0.0099 
------------------------------------------------------------------------------ 
Weak identification test (Cragg-Donald Wald F statistic):                6.694 
Stock-Yogo weak ID test critical values: 10% maximal IV size             16.38 
                                         15% maximal IV size              8.96 
                                         20% maximal IV size              6.66 
                                         25% maximal IV size              5.53 
Source: Stock-Yogo (2005).  Reproduced by permission. 
------------------------------------------------------------------------------ 
Sargan statistic (overidentification test of all instruments):           0.000 
                                                 (equation exactly identified) 
------------------------------------------------------------------------------ 
Instrumented:         ed 
Excluded instruments: gt6km 
------------------------------------------------------------------------------ 
 
 
Notice that the option first, added after a comma in the ivreg instruction, gives me the first-stage 
regression, in addition to the IV regression. Of course, the first-stage regression is very useful and 
important in this context, as it sheds light on whether we have an informative (relevant) 
instrument or not. Basically, if the instrument is insignificant in the first-stage, we effectively 
have not identified the model, and so we will not learn anything from the IV results. 
 
Based on the first-stage results, it appears that we can at least be hopeful that we will be able to 
identify the parameter of interest in the second stage (i.e. the coefficient on education), since the 
coefficient on the distance dummy is negative (as expected) and significant at the 1% level. The 
point estimate implies that children living more than 6 km from the nearest primary school at the 
age of seven accumulate nearly one year (0.83) less education than those that do not. That seems 
to make sense. 
 
Turning to the IV estimator, we see that the point estimate of the education coefficient is 
somewhat higher than the OLS estimate (0.14 vs. 0.10). This would seem to contradict the 
underlying prior, which is that education is positively correlated with unobserved ability and 
hence with the residual. In fact, this is a very common result in the empirical literature, see Card 
(2001) for a review. 
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We also see that the estimated standard error is very high indeed. Recall that the confidence 
interval for the OLS estimator is 9-11%. For the IV estimator, the 95% confidence interval is -4 
to 33%, and so we cannot reject the hypothesis that the coefficient is zero. Thus, we appear to 
learn very little from this exercise. Why that may be so is an important issue that we will return to 
later. 
 
Finally, note that in the (very) special case where there is one endogenous explanatory variable 
and one instrument, which is a dummy variable, one can show (indeed you will be asked to do so 
in the first problem set) that the IV estimator 1β̂  can be written as 

 
01

01
1

ˆ
xx
yy

−
−

=β , 

where 0y  and 0x  are the sample averages of iy and ix  over the part of the sample with 0=iz , 
and 1y  and 1x  are the sample averages of iy and ix  over the part of the sample with 1=iz . In 
our case we have: 
 
. tabstat lw ed, s(mean) by(gt6km); 
 
Summary statistics: mean 
  by categories of: gt6km  
 
   gt6km |        lw        ed 
---------+-------------------- 
       0 |  4.215979  10.00926 
       1 |  4.097089  9.174419 
---------+-------------------- 
   Total |  4.205216  9.933684 
------------------------------ 
 
Using the formula above thus yields (4.097089-4.215979)/(9.174419-10.00926) = 0.14241. This 
estimator is sometimes referred to as the Wald estimator. You might find this helps you with the 
intuition of the IV estimator.   
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2. Estimation by GMM  
. ivreg2 lwage  (educ= nearc2 nearc4 motheduc fatheduc) exper expersq black south smsa 
reg661 reg662 reg663 reg664 reg665 reg666 reg667 reg668 smsa66, robust endog(educ); 
 
IV (2SLS) estimation 
-------------------- 
 
Estimates efficient for homoskedasticity only 
Statistics robust to heteroskedasticity 
 
                                                      Number of obs =     2220 
                                                      F( 15,  2204) =    38.40 
                                                      Prob > F      =   0.0000 
Total (centered) SS     =  428.9994844                Centered R2   =   0.2600 
Total (uncentered) SS   =  88133.52155                Uncentered R2 =   0.9964 
Residual SS             =  317.4474881                Root MSE      =    .3781 
 
------------------------------------------------------------------------------ 
             |               Robust 
       lwage |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   .1017497   .0130693     7.79   0.000     .0761343    .1273652 
       exper |   .1004833   .0096578    10.40   0.000     .0815544    .1194123 
     expersq |   -.002493   .0004108    -6.07   0.000    -.0032983   -.0016878 
       black |  -.1549702    .026376    -5.88   0.000    -.2066661   -.1032742 
       south |  -.1226742   .0343093    -3.58   0.000    -.1899193   -.0554292 
        smsa |   .1244044   .0233825     5.32   0.000     .0785754    .1702333 
      reg661 |   -.080592   .0456197    -1.77   0.077    -.1700049    .0088209 
      reg662 |   .0056286   .0335724     0.17   0.867     -.060172    .0714293 
      reg663 |   .0411136   .0324834     1.27   0.206    -.0225527    .1047799 
      reg664 |  -.0486601   .0413421    -1.18   0.239    -.1296891    .0323688 
      reg665 |    .013062   .0454376     0.29   0.774    -.0759939     .102118 
      reg666 |   .0314252   .0497923     0.63   0.528    -.0661658    .1290162 
      reg667 |   .0172291   .0482101     0.36   0.721    -.0772609    .1117191 
      reg668 |  -.1598693   .0552705    -2.89   0.004    -.2681974   -.0515412 
      smsa66 |   .0276992    .021362     1.30   0.195    -.0141696     .069568 
       _cons |    4.23282    .227809    18.58   0.000     3.786322    4.679317 
------------------------------------------------------------------------------ 
Underidentification test (Kleibergen-Paap rk LM statistic):            169.520 
                                                   Chi-sq(4) P-val =    0.0000 
------------------------------------------------------------------------------ 
Weak identification test (Kleibergen-Paap rk Wald F statistic):         56.318 
Stock-Yogo weak ID test critical values:  5% maximal IV relative bias    16.85 
                                         10% maximal IV relative bias    10.27 
                                         20% maximal IV relative bias     6.71 
                                         30% maximal IV relative bias     5.34 
                                         10% maximal IV size             24.58 
                                         15% maximal IV size             13.96 
                                         20% maximal IV size             10.26 
                                         25% maximal IV size              8.31 
Source: Stock-Yogo (2005).  Reproduced by permission. 
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors. 
------------------------------------------------------------------------------ 
Hansen J statistic (overidentification test of all instruments):         6.236 
                                                   Chi-sq(3) P-val =    0.1007 
-endog- option: 
Endogeneity test of endogenous regressors:                               3.720 
                                                   Chi-sq(1) P-val =    0.0538 
Regressors tested:    educ 
------------------------------------------------------------------------------ 
Instrumented:         educ 
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Included instruments: exper expersq black south smsa reg661 reg662 reg663 
reg664 
                      reg665 reg666 reg667 reg668 smsa66 
Excluded instruments: nearc2 nearc4 motheduc fatheduc 
------------------------------------------------------------------------------ 

 
. ivreg2 lwage  (educ= nearc2 nearc4 motheduc fatheduc) exper expersq black south smsa 
reg661 reg662 reg663 re 
> g664 reg665  
> reg666 reg667 reg668 smsa66, gmm2s robust endog(educ); 
 
2-Step GMM estimation 
--------------------- 
 
Estimates efficient for arbitrary heteroskedasticity 
Statistics robust to heteroskedasticity 
 
                                                      Number of obs =     2220 
                                                      F( 15,  2204) =    38.74 
                                                      Prob > F      =   0.0000 
Total (centered) SS     =  428.9994844                Centered R2   =   0.2614 
Total (uncentered) SS   =  88133.52155                Uncentered R2 =   0.9964 
Residual SS             =   316.878457                Root MSE      =    .3778 
 
------------------------------------------------------------------------------ 
             |               Robust 
       lwage |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   .1003219   .0130403     7.69   0.000     .0747635    .1258804 
       exper |   .0997653    .009651    10.34   0.000     .0808498    .1186808 
     expersq |  -.0024939   .0004108    -6.07   0.000    -.0032991   -.0016887 
       black |  -.1586361   .0262778    -6.04   0.000    -.2101396   -.1071325 
       south |   -.119613   .0342555    -3.49   0.000    -.1867525   -.0524735 
        smsa |   .1268335   .0233467     5.43   0.000     .0810749    .1725921 
      reg661 |  -.0860177   .0454949    -1.89   0.059    -.1751862    .0031507 
      reg662 |   .0042036   .0335305     0.13   0.900     -.061515    .0699222 
      reg663 |   .0393087   .0324169     1.21   0.225    -.0242272    .1028446 
      reg664 |  -.0506996   .0412997    -1.23   0.220    -.1316455    .0302463 
      reg665 |   .0080002   .0453793     0.18   0.860    -.0809415     .096942 
      reg666 |   .0198662   .0494659     0.40   0.688    -.0770852    .1168175 
      reg667 |   .0111105   .0481193     0.23   0.817    -.0832017    .1054226 
      reg668 |  -.1654134   .0551271    -3.00   0.003    -.2734605   -.0573664 
      smsa66 |   .0256423   .0213386     1.20   0.229    -.0161805    .0674651 
       _cons |   4.260154    .227212    18.75   0.000     3.814826    4.705481 
------------------------------------------------------------------------------ 
Underidentification test (Kleibergen-Paap rk LM statistic):            169.520 
                                                   Chi-sq(4) P-val =    0.0000 
------------------------------------------------------------------------------ 
Weak identification test (Kleibergen-Paap rk Wald F statistic):         56.318 
Stock-Yogo weak ID test critical values:  5% maximal IV relative bias    16.85 
                                         10% maximal IV relative bias    10.27 
                                         20% maximal IV relative bias     6.71 
                                         30% maximal IV relative bias     5.34 
                                         10% maximal IV size             24.58 
                                         15% maximal IV size             13.96 
                                         20% maximal IV size             10.26 
                                         25% maximal IV size              8.31 
Source: Stock-Yogo (2005).  Reproduced by permission. 
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors. 
------------------------------------------------------------------------------ 
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Hansen J statistic (overidentification test of all instruments):         6.236 
                                                   Chi-sq(3) P-val =    0.1007 
-endog- option: 
Endogeneity test of endogenous regressors:                               3.720 
                                                   Chi-sq(1) P-val =    0.0538 
Regressors tested:    educ 
------------------------------------------------------------------------------ 
Instrumented:         educ 
Included instruments: exper expersq black south smsa reg661 reg662 reg663 
reg664 
                      reg665 reg666 reg667 reg668 smsa66 
Excluded instruments: nearc2 nearc4 motheduc fatheduc 
------------------------------------------------------------------------------ 
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3.  Illustration using the CARD.RAW data  
 
Note: The CARD.RAW data are used in various problems in Wooldridge, e.g. 
problem 5.4 and 6.1. 
 
  
. use "C:\teaching_gbg07\applied_econ07\lectures\wooldat\CARD.dta", clear 
 
 
 

 
Table 3.1 OLS 

      Source |       SS       df       MS              Number of obs =    2220 
-------------+------------------------------           F( 15,  2204) =   54.96 
       Model |  116.783056    15  7.78553706           Prob > F      =  0.0000 
    Residual |  312.216429  2204  .141658997           R-squared     =  0.2722 
-------------+------------------------------           Adj R-squared =  0.2673 
       Total |  428.999484  2219  .193330097           Root MSE      =  .37638 
 
------------------------------------------------------------------------------ 
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   .0770086   .0040714    18.91   0.000     .0690243    .0849928 
       exper |   .0898502   .0079036    11.37   0.000     .0743509    .1053495 
     expersq |  -.0024481   .0003967    -6.17   0.000    -.0032261   -.0016702 
       black |  -.1761354   .0239043    -7.37   0.000    -.2230128   -.1292581 
       south |   -.125071   .0312269    -4.01   0.000    -.1863083   -.0638338 
        smsa |   .1376717   .0235462     5.85   0.000     .0914967    .1838468 
      reg661 |  -.0865621   .0457195    -1.89   0.058    -.1762199    .0030956 
      reg662 |  -.0020709   .0318752    -0.06   0.948    -.0645795    .0604378 
      reg663 |   .0314867    .031107     1.01   0.312    -.0295154    .0924888 
      reg664 |  -.0503983    .040855    -1.23   0.217    -.1305165      .02972 
      reg665 |   .0036234   .0422329     0.09   0.932     -.079197    .0864438 
      reg666 |   .0182858   .0488216     0.37   0.708    -.0774553    .1140269 
      reg667 |   .0048968   .0459144     0.11   0.915    -.0851432    .0949367 
      reg668 |  -.1557652   .0520945    -2.99   0.003    -.2579245   -.0536058 
      smsa66 |   .0279434   .0227061     1.23   0.219    -.0165842     .072471 
       _cons |   4.656564   .0833419    55.87   0.000     4.493128    4.820001 
------------------------------------------------------------------------------ 
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Table 3.2: Reduced form education for education 

 
      Source |       SS       df       MS              Number of obs =    2220 
-------------+------------------------------           F( 18,  2201) =  115.63 
       Model |  7221.94718    18  401.219288           Prob > F      =  0.0000 
    Residual |  7636.97669  2201  3.46977587           R-squared     =  0.4860 
-------------+------------------------------           Adj R-squared =  0.4818 
       Total |  14858.9239  2219  6.69622527           Root MSE      =  1.8627 
 
------------------------------------------------------------------------------ 
        educ |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      nearc2 |   .0180446    .087154     0.21   0.836     -.152868    .1889573 
      nearc4 |   .2604735   .0983896     2.65   0.008     .0675272    .4534197 
    motheduc |   .1324826   .0170677     7.76   0.000     .0990122    .1659531 
    fatheduc |   .1111796   .0145968     7.62   0.000     .0825547    .1398045 
       exper |  -.3805367   .0382972    -9.94   0.000    -.4556392   -.3054343 
     expersq |   .0025954   .0019641     1.32   0.187    -.0012563     .006447 
       black |  -.3459218   .1219798    -2.84   0.005    -.5851293   -.1067143 
       south |  -.0518041   .1548235    -0.33   0.738    -.3554196    .2518113 
        smsa |   .4218089   .1167867     3.61   0.000     .1927854    .6508325 
      reg661 |  -.3795599   .2283522    -1.66   0.097    -.8273683    .0682485 
      reg662 |  -.3169284   .1583069    -2.00   0.045    -.6273748    -.006482 
      reg663 |  -.3542991   .1570864    -2.26   0.024    -.6623522    -.046246 
      reg664 |  -.0814964   .2059201    -0.40   0.692    -.4853145    .3223218 
      reg665 |  -.2797824   .2111526    -1.33   0.185    -.6938616    .1342969 
      reg666 |  -.4014203   .2431572    -1.65   0.099    -.8782619    .0754213 
      reg667 |  -.2318261   .2296505    -1.01   0.313    -.6821804    .2185282 
      reg668 |   .0818341   .2624031     0.31   0.755    -.4327495    .5964177 
      smsa66 |  -.2201582   .1174246    -1.87   0.061    -.4504328    .0101165 
       _cons |   14.02289   .2995127    46.82   0.000     13.43554    14.61025 
------------------------------------------------------------------------------ 
 
. test nearc2 nearc4 motheduc fatheduc ; 
 
 ( 1)  nearc2 = 0 
 ( 2)  nearc4 = 0 
 ( 3)  motheduc = 0 
 ( 4)  fatheduc = 0 
 
       F(  4,  2201) =   65.48 
            Prob > F =    0.0000 
 
. predict res, res; 
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Table 3.3 Regression based Hausman test for endogeneity 

      Source |       SS       df       MS              Number of obs =    2220 
-------------+------------------------------           F( 16,  2203) =   51.88 
       Model |  117.405539    16   7.3378462           Prob > F      =  0.0000 
    Residual |  311.593945  2203  .141440738           R-squared     =  0.2737 
-------------+------------------------------           Adj R-squared =  0.2684 
       Total |  428.999484  2219  .193330097           Root MSE      =  .37609 
 
------------------------------------------------------------------------------ 
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   .1017497   .0124755     8.16   0.000     .0772848    .1262147 
       exper |   .1004833   .0093841    10.71   0.000     .0820808    .1188859 
     expersq |   -.002493    .000397    -6.28   0.000    -.0032715   -.0017146 
       black |  -.1549702   .0259292    -5.98   0.000    -.2058184    -.104122 
       south |  -.1226742   .0312237    -3.93   0.000    -.1839053   -.0614432 
        smsa |   .1244044   .0243632     5.11   0.000     .0766271    .1721816 
      reg661 |   -.080592   .0457728    -1.76   0.078    -.1703544    .0091703 
      reg662 |   .0056286   .0320614     0.18   0.861    -.0572452    .0685025 
      reg663 |   .0411136   .0314199     1.31   0.191    -.0205022    .1027294 
      reg664 |  -.0486601   .0408319    -1.19   0.233    -.1287332    .0314129 
      reg665 |    .013062   .0424395     0.31   0.758    -.0701636    .0962876 
      reg666 |   .0314252   .0491844     0.64   0.523    -.0650274    .1278778 
      reg667 |   .0172291   .0462541     0.37   0.710     -.073477    .1079353 
      reg668 |  -.1598693   .0520911    -3.07   0.002     -.262022   -.0577166 
      smsa66 |   .0276992   .0226889     1.22   0.222    -.0167947    .0721931 
         res |  -.0276853   .0131969    -2.10   0.036    -.0535649   -.0018056 
       _cons |   4.232819   .2184829    19.37   0.000     3.804366    4.661273 
------------------------------------------------------------------------------ 
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Table 3.4: 2SLS estimates  

. ivreg2 lwage  (educ= nearc2 nearc4 motheduc fatheduc) exper expersq black 
south smsa reg661 reg662 reg663 reg664 reg665 reg666 reg667 reg668 smsa66, 
endog(educ); 
 
IV (2SLS) estimation 
-------------------- 
 
Estimates efficient for homoskedasticity only 
Statistics consistent for homoskedasticity only 
 
                                                      Number of obs =     2220 
                                                      F( 15,  2204) =    34.95 
                                                      Prob > F      =   0.0000 
Total (centered) SS     =  428.9994844                Centered R2   =   0.2600 
Total (uncentered) SS   =  88133.52155                Uncentered R2 =   0.9964 
Residual SS             =  317.4474881                Root MSE      =    .3781 
 
------------------------------------------------------------------------------ 
       lwage |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   .1017497   .0125438     8.11   0.000     .0771643    .1263351 
       exper |   .1004833   .0094355    10.65   0.000     .0819901    .1189765 
     expersq |   -.002493   .0003991    -6.25   0.000    -.0032754   -.0017107 
       black |  -.1549702   .0260712    -5.94   0.000    -.2060688   -.1038715 
       south |  -.1226742   .0313948    -3.91   0.000    -.1842068   -.0611416 
        smsa |   .1244044   .0244966     5.08   0.000     .0763919    .1724169 
      reg661 |   -.080592   .0460235    -1.75   0.080    -.1707964    .0096124 
      reg662 |   .0056286    .032237     0.17   0.861    -.0575548    .0688121 
      reg663 |   .0411136    .031592     1.30   0.193    -.0208056    .1030328 
      reg664 |  -.0486601   .0410555    -1.19   0.236    -.1291275    .0318072 
      reg665 |    .013062   .0426719     0.31   0.760    -.0705735    .0966975 
      reg666 |   .0314252   .0494538     0.64   0.525    -.0655024    .1283528 
      reg667 |   .0172291   .0465074     0.37   0.711    -.0739237     .108382 
      reg668 |  -.1598693   .0523764    -3.05   0.002    -.2625251   -.0572135 
      smsa66 |   .0276992   .0228132     1.21   0.225    -.0170138    .0724122 
       _cons |    4.23282   .2196795    19.27   0.000     3.802256    4.663383 
------------------------------------------------------------------------------ 
Underidentification test (Anderson canon. corr. LM statistic):         236.081 
                                                   Chi-sq(4) P-val =    0.0000 
------------------------------------------------------------------------------ 
Weak identification test (Cragg-Donald Wald F statistic):               65.478 
Stock-Yogo weak ID test critical values:  5% maximal IV relative bias    16.85 
                                         10% maximal IV relative bias    10.27 
                                         20% maximal IV relative bias     6.71 
                                         30% maximal IV relative bias     5.34 
                                         10% maximal IV size             24.58 
                                         15% maximal IV size             13.96 
                                         20% maximal IV size             10.26 
                                         25% maximal IV size              8.31 
Source: Stock-Yogo (2005).  Reproduced by permission. 
------------------------------------------------------------------------------ 
Sargan statistic (overidentification test of all instruments):           6.556 
                                                   Chi-sq(3) P-val =    0.0875 
-endog- option: 
Endogeneity test of endogenous regressors:                               4.426 
                                                   Chi-sq(1) P-val =    0.0354 
Regressors tested:    educ 
------------------------------------------------------------------------------ 
Instrumented:         educ 
Included instruments: exper expersq black south smsa reg661 reg662 reg663 
reg664 
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                      reg665 reg666 reg667 reg668 smsa66 
Excluded instruments: nearc2 nearc4 motheduc fatheduc 
------------------------------------------------------------------------------ 
 
. ivendog; 
 
Tests of endogeneity of: educ 
H0: Regressor is exogenous 
    Wu-Hausman F test:                  4.40102  F(1,2203)   P-value = 0.03603 
    Durbin-Wu-Hausman chi-sq test:      4.42614  Chi-sq(1)   P-value = 0.03539 
 
 
 
 

 
Table 3.5: 2SLS estimates excluding parents' education (dubious IVs) 

. ivreg2 lwage  (educ= nearc2 nearc4 ) exper expersq black south smsa reg661 
reg662 reg663 reg664 reg665  
> reg666 reg667 reg668 smsa66, endog(educ); 
 
IV (2SLS) estimation 
-------------------- 
 
Estimates efficient for homoskedasticity only 
Statistics consistent for homoskedasticity only 
 
                                                      Number of obs =     2220 
                                                      F( 15,  2204) =    27.70 
                                                      Prob > F      =   0.0000 
Total (centered) SS     =  428.9994844                Centered R2   =   0.1739 
Total (uncentered) SS   =  88133.52155                Uncentered R2 =   0.9960 
Residual SS             =  354.3903925                Root MSE      =    .3995 
 
------------------------------------------------------------------------------ 
       lwage |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   .1472587   .0702897     2.10   0.036     .0094935    .2850239 
       exper |    .120042   .0312972     3.84   0.000     .0587006    .1813834 
     expersq |  -.0025757     .00044    -5.85   0.000     -.003438   -.0017134 
       black |  -.1160388   .0651608    -1.78   0.075    -.2437517    .0116741 
       south |  -.1182655   .0338386    -3.49   0.000     -.184588   -.0519431 
        smsa |   .1000003   .0451679     2.21   0.027     .0114729    .1885278 
      reg661 |  -.0696106   .0514015    -1.35   0.176    -.1703557    .0311345 
      reg662 |   .0197911   .0402696     0.49   0.623    -.0591358    .0987181 
      reg663 |   .0588214   .0428444     1.37   0.170     -.025152    .1427949 
      reg664 |   -.045463   .0436489    -1.04   0.298    -.1310134    .0400873 
      reg665 |   .0304235   .0522139     0.58   0.560    -.0719139    .1327609 
      reg666 |   .0555939   .0638295     0.87   0.384    -.0695097    .1806974 
      reg667 |   .0399133   .0599879     0.67   0.506    -.0776608    .1574875 
      reg668 |  -.1674185   .0565124    -2.96   0.003    -.2781807   -.0566562 
      smsa66 |   .0272501   .0241137     1.13   0.258    -.0200119    .0745121 
       _cons |   3.453381   1.204836     2.87   0.004     1.091946    5.814816 
------------------------------------------------------------------------------ 
Underidentification test (Anderson canon. corr. LM statistic):           8.394 
                                                   Chi-sq(2) P-val =    0.0150 
------------------------------------------------------------------------------ 
Weak identification test (Cragg-Donald Wald F statistic):                4.180 
Stock-Yogo weak ID test critical values: 10% maximal IV size             19.93 
                                         15% maximal IV size             11.59 
                                         20% maximal IV size              8.75 
                                         25% maximal IV size              7.25 
Source: Stock-Yogo (2005).  Reproduced by permission. 
------------------------------------------------------------------------------ 
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Sargan statistic (overidentification test of all instruments):           3.495 
                                                   Chi-sq(1) P-val =    0.0615 
-endog- option: 
Endogeneity test of endogenous regressors:                               1.138 
                                                   Chi-sq(1) P-val =    0.2861 
Regressors tested:    educ 
------------------------------------------------------------------------------ 
Instrumented:         educ 
Included instruments: exper expersq black south smsa reg661 reg662 reg663 
reg664 
                      reg665 reg666 reg667 reg668 smsa66 
Excluded instruments: nearc2 nearc4 
------------------------------------------------------------------------------ 
 
 



1. Small sample & strong IVs vs. large sample & weak IVs 

 

Model: 

x = alpha*z + v2 

y = beta*x + u1 

No endogeneity. How well does the IV estimator do? Results from 200 simulations based on artificial 
data based on alpha=beta=1. 

Case 1: Small sample (N=50), strong instrument (t-stat 1st stage = 6.0) 

    Variable       |       Obs        Mean    Std. Dev.       Min        Max 

-------------------+-------------------------------------------------------- 

      E(alpha_ols) |       200    1.004607     .161436   .5434976   1.466404 

      E(beta_ols)  |       200    .9712768    .1705391   .5916569   1.518729 

      E(beta_iv)   |       200    .9688918    .2606616   .2876143   1.824383 

 

Case 2: Large sample (N=2000), weak instrument (t-stat 1st stage = 2.0) 

. sum store1 store2 store3 

N=2000 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

   E(alpha_ols)|       200    1.019581    .5327355  -.4075418   2.487735 

  E(beta_ols)  |       200     .977441    .1674216   .5277573    1.43578 

  E(beta_iv)   |       200   -.5020311    12.56567  -136.0609   23.53888 

 

  

mansod
Typewritten Text
SECTION 4: SAMPLE SIZE & IV ESTIMATION

mansod
Typewritten Text

mansod
Typewritten Text

mansod
Typewritten Text

mansod
Typewritten Text

mansod
Typewritten Text



2. Too many instruments  

True model: 

ge e2=std_v2*invnorm(uniform()) 
ge e1=std_e1*invnorm(uniform()) 
 
ge u1=e1+e2 
 
ge x = 1*z + e2 
ge y = 0*x + u1 
 

where z, which is a valid and informative instrument, is drawn from std normal 
distribution.  

True coefficient, denoted beta, on x is zero, but OLS is biased since x is 
correlated with u1. The plim of the OLS estimator is 0.5 here. 

Now consider using as instruments for x 50 random variables w1,w2,…,w50 that are 
totally uncorrelated with x in theory. We do not use z (assume not available).  

Question: how does the 2SLS estimator perform? 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

      E(beta_ols)      |       200    .4927751    .0171272   .4467664   .5439443 

      E(beta_2sls)     |       200     .413747    .1071855   .1153944   .7246853 

      E(std error 2sls)|       200    .1144694    .0110274   .0935858   .1683483 

      E(beta_LIML)     |       200     .035033    2.161731  -10.14505   12.20792 

      E(std error LIML)|       200    1.731708    6.296244   .1315755   47.98719 

 

=> 2SLS IS CLEARLY BIASED TOWARDS OLS! The Limited Information Maximum Likelihood 
(LIML) estimator appears much more robust in this context. 

 

3. Same model as in (2) but with using only 5 instruments 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

      E(beta_ols)      |       200    .4927751    .0171272   .4467664   .5439443 

      E(beta_2sls)     |       200    .3097683    .4376534  -1.724144   1.178116 

      E(std error 2sls)|       200     .471942    .3071753   .2225561    3.96013 

      E(beta_LIML)     |       200    .2219852    11.76237  -120.5036   88.33043 

      E(std error LIML)|       200    70.10669    564.0644   .2356987   6711.553 

The Stata program generating these results can be found below. 
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/*  
 
Illustration: Too many instruments 
 
*/ 
 
 
clear 
local N=2000 
local seedn=457387+`N' 
set seed `seedn' 
 
set matsize 1600 
 
set obs `N' 
set more off 
 
ge z=invnorm(uniform()) 
scalar std_v2 = 1 
scalar std_e1 = 1 
 
 
forvalues i = 1(1)50 { 
generate w`i' = uniform() 
} 
 
 
local k=1 
 
mat store=J(200,5,0) 
 
qui{ 
while `k'<=200{ 
 
ge e2=std_v2*invnorm(uniform()) 
ge e1=std_e1*invnorm(uniform()) 
 
ge u1=e1+e2 
 
ge x = 1*z + e2 
 
ge y = 0*x + u1 
 
if `k'==1 { 
noi reg y x 
mat store[`k',1]=_b[x]  /* ols coefficient */ 
noi ivreg2 y (x=w1-w50 ) 
mat store[`k',2]=_b[x]  /* iv coefficient */ 
mat V=e(V) 
mat store[`k',3]=sqrt(V[1,1])  /* iv std error*/ 
 
noi ivreg2 y (x=w1-w50 ), liml 
mat store[`k',4]=_b[x]  /* liml coefficient */ 
mat V=e(V) 
mat store[`k',5]=sqrt(V[1,1])  /* liml std error*/ 
 
} 
 
if `k'>1 { 
reg y x 
mat store[`k',1]=_b[x]  /* ols coefficient */ 



ivreg2 y (x=w1-w50) 
mat store[`k',2]=_b[x]  /* iv coefficient */ 
mat V=e(V) 
mat store[`k',3]=sqrt(V[1,1])  /* iv std error*/ 
ivreg2 y (x=w1-w50), liml 
mat store[`k',4]=_b[x]  /* liml coefficient */ 
mat V=e(V) 
mat store[`k',5]=sqrt(V[1,1])  /* liml std error*/ 
 
} 
 
disp `k' 
drop e1 e2 x y u1 
 
local k=`k'+1 
} 
} 
svmat store 
/* note: 
mean(store1) = E(b_ols) 
mean(store2) = E(b_2sls) 
mean(store3) = se(b_2sls) 
mean(store4) = E(b_liml) 
mean(store5) = se(b_liml) 
*/ 
 
sum store1 store2 store3 store4 store5 
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