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1. Introduction & Organization

� The overall aim of this course is to improve

� your understanding of empirical research in economics; and

� your ability to apply econometric methods in your own research

� Good empirical economics: Ask an interesting research question, and �nd an identi�cation strategy

that enables you to answer the question.

� Mastering statistical techniques - e.g. OLS, 2SLS, GMM, Maximum Likelihood,.... - is only one of

your tasks. Being able to program your own likelihood function in Stata is impressive, but doesn�t

guarantee you will be regarded as an outstanding empirical economist.

� Techniques are essentially tools, and if what you are �building�is not important or interesting, it

doesn�t matter how rigorous your methods are.

� I would argue that the opposite applies too: You may have an important idea, but if your quanti-

tative analysis is poor quality the research project is unlikely to be a success.

� These lectures are based on the assumption that you are reasonably comfortable with the material

taught in the �rst year courses in econometrics. In those courses you learned a lot about econometric

theory. Building on this, we will stress interpretation and assumptions in this course, not derivations

or theorems.

� The course is oriented towards the analysis of cross-section and panel data. Pure time series

econometrics will not be covered (though the lectures on the analysis of long panels will be closely

related to time series econometrics).

1.1. Mechanics & Examination

� To get the course credits, �ve computer exercises have to be completed, plus you need to pass an

oral exam.
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�Computer exercises: Feel free to work collaborate with fellow students on these (a group size

of 2 or 3 students would be best). Short reports on the computer exercises - one per group &

exercise - should be emailed to me one week after each computer session, at the latest.

We will follow up on these in class, plus there will be a revision class in October where you

will be asked to present your solutions.

�Oral exam (October 29-30th): Details to follow, but basically each student gets assigned a

30-minute slot. During the viva, the student meets with the examiner(s) and will be requested

to answer a small number of questions on the course material orally.

�Grades (Fail, Pass or High Pass) will be based on the performance in the viva and in the

computer exercises.

� The course web page will be updated continuously, especially with regards to relevant articles and

research papers. So you should check for updates every now and then. Also, please provide me

with your name and email address, so that I can communicate with you as a group through email.

[A look at the schedule]
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1.2. Two textbooks - Two points of view

� Wooldridge (2002) Econometric Analysis of Cross Section and Panel Data. Well written, fairly con-

ventional take on econometrics (at least compared to Angrist and Pischke). Core of the conceptual

framework: The population model. Model-based paradigm.

� Angrist and Pischke (2009). Mostly Harmless Econometrics. Brilliant exposition, re�ects the �new�

way of thinking about econometrics, which is based on the experimentalist paradigm. Core of the

conceptual framework: Potential outcomes. We will use this book intensively in the second part of

the course, when discussing econometric methods for program evaluation (estimation of treatment

e¤ects).

1.3. Recommended reading for this lecture

Angrist and Pischke (2009), Chapters 1-2, 3.1-3.2.

Wooldridge (2002), Chapters 1-2, 4-5.
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2. Questions about questions

Reference: Angrist & Pischke, Chapter 1. Wooldridge, Chapter 1.

This chapter emphasizes that there is more to empirical economics than just statistical techniques.

The authors argue that a research agenda revolves around four questions:

� What is your causal relationship of interest?

� What would your ideal experiment look like - i.e. one that would enable you to capture the

causal e¤ect of interest?

� What is your identi�cation strategy?

� What is your mode of statistical inference?

This really is fundamental. You could do worse than taking these four bullet points as a starting point

for the introduction of the paper you are currently writing (OK, you may want to add some context &

motivation after the �rst question). Let�s discuss them brie�y.

2.0.1. Your causal relationship of interest

Causal relationship: tells you what will happen to some quantity of interest (expected earnings) as a result

of changing the causal variable (e.g. years of schooling), holding other variables �xed. The counterfactual

concept is central here - what is the counterfactual of pursuing a di¤erent educational policy, for example.

� Causality in the experimentalist paradigm: What might have happened to someone who was

exposed to a training programme ( Di = 1) if that person had not been exposed to the programme

(Di = 0). In such a case where treatment is binary, the starting point for the analysis is potential

outcomes:

Potential outcome =

8>><>>:
Y1i if Di = 1

Y0i if Di = 0

9>>=>>;
where - key! - the potential outcomes are independent of whether the individual actually par-

ticipates in the training programme. The causal e¤ect of treatment is de�ned as the di¤erence
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between Y1i and Y0i. Of course, only one of the potential outcomes can be observed, and so the

main challenge is to come up with ways of constructing a measure of the potential outcome that we

do not observe (the counterfactual). A common quantity of interest is the average treatment e¤ect.

� Causality in the model-based paradigm: The causal e¤ect of change in an �explanatory�variable

w on some outcome variable of interest, e.g. the expected value of y. In order to �nd the causal

e¤ect, we must hold all other relevant factors (the control variables) �xed - ceteris paribus analysis.

Exactly what those other factors are is, of course, not obvious, which is why economic theory is

often used to derive the estimable equation. The basic idea behind running a regression is that this

enables you to condition on the control variables. Whether you are allowed a causal interpretation

essentially depends on if you�ve managed to control for all relevant factors determining your outcome

variable. .

2.0.2. Your ideal experiment

In this course we will talk a lot about the problems posed by (traditional econometrics jargon) endogeneity

bias or (new econometrics jargon) sample selection bias. In general, if your goal is to estimate the causal

e¤ect of changing variable X on your outcome variable of interest, then the best approach is random

assignment. In many cases this is too costly or totally impractical, and so we have no choice but to

look for answers using observational (non-experimental) data. Even so, thinking hard about the �ideal�

experiment may be a useful when getting started on a research project (e.g. when you�re designing a

survey instrument or the survey design), and it may help you interpret the regressions you�ve run based

on observational data.

It�s also a useful checkpoint: If even in an �ideal�world you can�t design the experiment you need to

answer your question of interest, then chances are you won�t be able to make much progress in the real

world.

In short, forcing yourself to think about the mechanics of an ideal experiment highlights the forces

you�d like to change, and the factors you�d like to hold constant - and you need to be clear on this to be
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able to say something about causality.

2.0.3. Your identi�cation strategy

Recognizing that the ideal experiment is likely not practical, you have to make do with the data you�ve

got (or can get) The term identi�cation strategy is often used these days as a way of summarizing the

manner in which you use observational data to approximate a real experiment. A classic example is the

Angrist-Krueger (1991) QJE paper in which the authors use the interaction of compulsory attendance

laws in US states and students�season of birth as a natural experiment yo estimate the causal e¤ects

of �nishing high school on wages. In general, if you don�t have data generated from a clean, laboratory

type experiment, then using data from a natural experiment is second best (you will then likely spend

most of your time at seminars arguing about whether your data really can be interpreted as having been

generated by a natural experiment).

2.0.4. Your mode of statistical inference

� The population you�re studying.

� Your sample.

� The procedure for calculating standard errors.

If you�re clear on your mode of statistical inference, then you will be able to make accurate statements

about what we can learn from your data analysis about mechanisms of interest in the population.

If you�re clear on all these four questions (referred to as FAQ by Angrist and Pischke), you�ve done

most of the hard work - now �all�that remains is the statistical analysis.
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3. Conditional Expectations

� Reference: Wooldridge, Chapter 2.

� Goal of most empirical studies: Find out what is the e¤ect of a variable w on the expected value of

y, holding �xed a vector of controls c. That is, we want to establish the partial e¤ect of changing

w on E (yjw; c) ;holding c constant. E (yjw; c) is sometimes referred to as a structural conditional

expectation, where the word "structural" re�ects the idea that theory plays an important role in

determining the empirical model.

� If w is continuous, the partial e¤ect is
@E (yjw; c)

@w
;

while if w is a dummy variable, we would look at

E (yjw = 1; c)� E (yjw = 0; c) :

Other types of partial e¤ects may be relevant too, depending on the context and the properties of

w.

� Estimating partial e¤ects such as these in practice is di¢ cult, primarily because of the unobserv-

ability problem: typically, not all elements of the vector c is observed, and perfectly measured,

in your data.

� Much of this course will be concerned with estimation and interpretation in view of precisely this

problem. Using a linear regression model, we will study problems posed by omitted variables, and

other sources of endogeneity bias, and discuss the leading ways by which such problems can be

addressed in practice. We focus mostly on instrumental variable estimation - 2SLS and GMM - and

panel data techniques
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3.1. Important statistical underpinnings

� Although we will not discuss theoretical results in great detail, it is useful to keep two things in

mind from now on, related to statistical theory:

�The �rst relates to the sample and the population. Following Wooldridge (2002), we will

usually - though not always, e.g. the sample selection model ("Heckit") - assume there is

an independent identically distributed (i.i.d) sample drawn from the population. We

assume there is a population model, for example

y = �0 + �1x1 + �2x2 + :::+ �KxK + u;

where x1; :::; xK are explanatory variables ("regressors"), and u is a residual. Our general goal

is to estimate some or all of the parameters �0; :::; �K , based on the sample.

�The second relates to the properties of the estimators: Again, following Wooldridge (2002),

we rely on asymptotic underpinnings in evaluating econometric estimators, as distinct from

�nite sample underpinnings. This, essentially, re�ects the current state of play in econometrics:

econometricians know a lot about the asymptotic properties of estimators, less about the �nite

sample properties. You may think this is somewhat o¤-putting - after all, none of us (yes?)

has access to a dataset in which N ! 1 (N will denote the number of observations except

when we discuss panel data). As we shall see, however, how well an estimator works in practice

does not exclusively depend on sample size. How informative your data are is very important

too. For example, if you have a very good instrument the "small sample bias" associated with

your 2SLS estimates may be negligible, whereas if the instrument is weak the bias might be

severe, even in a very large sample.
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3.2. Quantities of interest

� Let�s start with the issue of functional form, ignoring the residual. Most of the time we study

parametric models, i.e. models in which the functional form is taken to be "known" a priori.

�Of course, the most basic parametric model is linear in variables and parameters, e.g.

E (yjx1; x2) = �0 + �1x1 + �2x2;

and so estimation can be done by means of a linear regression model. The partial e¤ect of

(say) x1 on E (yjx1; x2) is simply �1 here, regardless of whether x1 is continuous or discrete.

�Writing the model as nonlinear in variables adds few complications to do with estimation:

E (yjx1; x2) = �0 + �1x1 + �2x2 + �3x22 (3.1)

or

E (yjx1; x2) = �0 + �1x1 + �2x2 + �3x1x2; (3.2)

because we can still use a linear regression model to estimate all the parameters of the model.

For sure, interpretation is a little less straightforward, but this should not be holding us back.

(In the latter model, what�s the partial e¤ect of x1, and how do you determine if this e¤ect is

signi�cantly di¤erent from zero?)

�However, models that are nonlinear in parameters, e.g.

E (yjx1; x2) = � (�0 + �1x1 + �2x2) ;

where � (�) denotes the cumulative density function for the standard normal distribution,

cannot in general be estimated using the linear regression model. We will discuss estimation

of such models in the second part of the course. (Incidentally, I �nd it interesting to note
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how little Angrist & Pischke care about nonlinear models of this type. In the old days (say

late 1980s and 1990s), estimating a binary choice model with OLS was widely considered a

cardinal sin. Well not any more - we will see this in the �rst computer exercise too.)

� While the partial e¤ect is usually the quantity of interest, sometimes we want to compute the

elasticity, or perhaps the semielasticity, of the conditional expected value of y with respect to

(say) x1. Sticking to the example with two explanatory variables, we have:

@E (yjx1; x2)
@x1

x1
E (yjx1; x2)

� @ logE (yjx1; x2)
@ log x1

(Elasticity)

� @E (log (y) jx1; x2)
@ log x1

;

@E (yjx1; x2)
@x1

1

E (yjx1; x2)
� @ logE (yjx1; x2)

@x1
(Semi-Elasticity)

� @E (log (y) jx1; x2)
@x1

:

In words, the elasticity tells us how much E (yjx1; x2) changes, in percentage terms, in response

to a 1% increase in x1: The semi-elasticity tells us how much E (yjx1; x2) changes, in percentage

terms, in response to a one unit increase in x1. Make sure you can de�ne the elasticities and

semi-elasticities for speci�cations (3.1) and (3.2) above.
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4. OLS Estimation

Reference: Wooldridge, Chapter 4.

Consider a population model that is linear in parameters:

y = �0 + �1x1 + �2x2 + :::+ �KxK + u;

where y; x1; x2; :::; xK are observable variables, u is the unobservable random disturbance term (the

residual or error term), and �0; �1; :::; �K are parameters that we wish to estimate. Whether OLS is an

appropriate estimator depends on the properties of the error term. As you know, for OLS to consistently

(remember: asymptotic underpinnings) estimate the �-parameters, the error term must have zero mean

and be uncorrelated with the explanatory variables:

E (u) = 0;

Cov (xj ; u) = 0; j = 0; 1; :::;K: (4.1)

The zero mean assumption is innocuous, as the intercept �0 would pick up a non-zero mean in u. The

crucial assumption is zero covariance, (4.1). If this assumption does not hold, say because x1 is correlated

with u, we say that x1 is endogenous. This terminology follows the convention in cross-section (micro)

econometrics (in traditional usage, a variable is endogenous if it is determined within the context of a

model). To illustrate why endogeneity is a problem, consider the simpli�ed model

y = �0 + �1x1 + u:

To simplify the notation, rewrite this in deviations from sample mean, so that I can eliminate the intercept

(not a parameter of interest here):

~y = �1~x1 + u;
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where ~y = y � �y, ~x = x� �x (u is mean zero, remember). The OLS estimator is then de�ned

�̂
OLS

1 = �1 +

P
i ~x1iuiP
i ~x

2
1i

;

(consult basic econometrics textbook if this is unclear). Hence:

p lim �̂
OLS

1 = �1 + p lim

P
i ~x1iuiP
i ~x

2
1i

; (4.2)

p lim �̂
OLS

1 = �1 +
Cov (x1; ui)

var (x1)
6= �1;

using Slutsky�s theorem (see appendix). In other words, the bias does not go away as the sample gets

large, since no matter how large your sample is, the covariance between x1 and u is nonzero.

Endogeneity is thus a rather serious problem, implying that we cannot rely on OLS if the goal is to

estimate (causal) partial e¤ects.
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4.1. OLS and the method of moments

For reasons that will be clearer later, it is useful to derive the OLS estimator from a set of moment

conditions, or population orthogonality conditions. Using matrix notation, we write the population

model (now with observation subscripts explicit) as

yi = xi� + u;

where

xi =

�
1 x1i x2i ::: xKi

�

is a vector of explanatory variables (the �rst element in x is constant at 1, re�ecting the presence of an

intercept in the parameter vector).1 The zero covariance condition is now written

E (x0u) = 0;

which is often referred to as a set of moment conditions or orthogonality conditions (notice that E (x0u)

is a (K + 1)� 1 column vector=. By de�nition this implies

E (x0 (y � x�)) = 0;

which yields a solution for �,

� = E [(x0x)]
�1
E (x0y) ; (4.3)

assumed that the x0x matrix is of full rank (ruling out multicollinearity).

O course the RHS of (4.3) is expressed in terms of population moments. By the analogy principle,

1Throughout these lecture notes I will try to be strict on myself and write vectors in bold - almost certainly, I will not
remember to do this all the time. In general, if x has a subscript (e.g. x1), then it is almost certainly a scalar; if x has no
subscript it is probably a vector or matrix; and if I write x it is almost certainly a vector or matrix.
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however, we can construct an estimator based on sample moments rather than population moments:

�̂ =

 
N�1

NX
i=1

x0ixi

!�1 
N�1

NX
i=1

x0iyi

!
;

or

�̂ = �+

 
N�1

NX
i=1

x0ixi

!�1 
N�1

NX
i=1

x0iui

!
: (4.4)

Taking plims of this yields the general version of (4.2). As long as E (x0u) = 0, we have p lim �̂ = �;

that is, consistency of the OLS estimator.

This way of deriving the OLS estimator from the moment conditions is very general, and we will see

below how various instrumental variable estimators can be derived in a similar fashion.
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4.2. Variance estimation

In writing these lectures I will not spend much time deriving variance estimators. This is because I want

to concentrate mainly on assumptions and derivations that are interesting from an economic, or even

behavioral, point of view. I just derived the OLS estimator from an economically signi�cant assumption,

namely E (x0u) = 0: If I am to justify estimating a production function by means of OLS, I have to think

seriously about the economic factors making up the residual, the �rm�s demand for labour and capital

(say), and whether it makes sense to assume that the residual is uncorrelated with the labour and capital

inputs, E (x0u) = 0. Thus, economic theory often helps us interpret the partial e¤ects.

Being able to do inference is absolutely crucial for empirical research, and in order to do inference we

need to estimate the covariance matrix associated with the parameter estimates. In my view, deriving the

covariance matrix is usually economically less interesting than deriving the partial e¤ects. I will therefor

not go into great detail about the theoretical origins of the variance estimator. Where there is some

interesting economic intuition, I will highlight it.

As you no doubt remember from your �rst-year econometrics course, the standard formula for the

OLS variance estimator is as follows

Avâr
�
�̂
�
= �̂2 (X0X)

�1
; (4.5)

where X is the N � K data matrix of regressors with the ith row xi. Based on this we can compute

standard errors, t-values, F-statistics etc. in the usual fashion.

One important assumption underlying (4.5) is that of homoskedasticity - i.e. that the variance of

the error term u is constant. Often, however, this assumption is not supported by the data.

[EXAMPLE: See Section 1 in the appendix.]

Heteroskedasticity may be the result of economically interesting mechanisms (do see any economics

in Figure 1?). Or it could be because the dependent variable is measured with more error at high (or

low) values of the explanatory variable(s). In any case, the upshot is that if homoskedasticity does not
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hold, the conventional variance formula (4.5) is no longer correct. The OLS estimator of �, however, is

still consistent.

A gentle exercise until next time we meet: a) Derive the formula (4.5) under homoskedasticity; b)

Show that this formula is wrong under heteroskedasticity
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4.2.1. Heteroskedasticity-robust standard errors

For a long time, weighted least squares was the standard cure for heteroskedasticity. This involved

transforming the observed variables Y;X in such a way as to make the residual in the transformed

regression homoskedastic, and then re-estimating the model with linear regression (i.e. run OLS again).

Nowadays, a much more popular approach is to use the OLS estimates of � (still consistent, remember)

and correct the standard errors so that they are valid in the presence of arbitrary heteroskedasticity. The

formula for heteroskedasticity-robust standard errors is as follows:

Avâr
�
�̂
�
= (X0X)

�1
 

NX
i=1

û2ix
0
ixi

!
(X0X)

�1
; (4.6)

and you request this in Stata by adding �robust�as an option to the command regress. These standard

errors - usually attributed by economists to White (1980) - are asymptotically valid in the presence of

any kind of heteroskedasticity, including homoskedasticity. Therefore, it would seem you might as well

always use robust standard errors (indeed most empirical papers now seem to favour them), in which

case you can remain agnostic as to whether there is or isn�t heteroskedasticity in the data. As we shall

see, the formula (4.6) can be tweaked depending on the nature of the problem, e.g. to take into account

arbitrary serial correlation in panel data or intra-cluster correlation of the residual in survey data.

Once robust standard errors have been obtained, you compute t-statistics in the usual way. These

t-statistics, of course, are robust to heteroskedasticity.

OLS is probably the most widely used estimator amongst applied economists. Nevertheless, the issue

of endogeneity is a potentially serious problem, since, if present, we can�t interpret our results causally.

We now turn to this issue.
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5. Sources of Endogeneity

� We said above that if Cov (xj ; u) 6= 0, then the variable xj is endogenous and OLS is inconsistent. So

why might a variable be endogenous? In principle, the problem of endogeneity may arise whenever

economists make use of non-experimental data, because in that setting you can never be totally

certain what is driving what.

� In contrast, in a perfectly clean experimental setting, where the researcher carefully and exogenously

changes the values of the x-variables one by one and observes outcomes y in the process, endogeneity

will not be a problem. In recent years, experiments have become very popular in certain areas of

applied economics, e.g. development micro economics. However, non-experimental data are still

the most common type of information underlying applied research. As we shall see later in this

course, the challenge set for themselves by economists adopting the experimentalist paradigm is

essentially to mimic clean experiments with their non-experimental data.

� Lots of examples in the literature. In Computer Exercise 1 we will consider the analysis by Miguel,

Satyanath and Segenti (JPE, 2004). These authors estimate the impact of economic conditions on

the likelihood of civil con�ict in Africa during 1981-99. They argue that civil wars may impact on

economic relationships and that there may be unobserved factors that impact both on the likelihood

of con�ict and economic conditions (e.g. governance). For this reason, the correlation between

economic conditions and war incidence cannot be interpreted causally. Instrumental variables are

used to address this endogeneity problem.

� In the context of non-experimental data, endogeneity typically arises in one of three ways: omitted

variables, measurement errors and simultaneity (Wooldridge, Section 4.1).
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5.1. Omitted variables

Omitted variables appear when we would like to - perhaps because economic theory says we should -

control for one or more additional variables in our model, but, typically because we do not have the data,

we cannot. For example, suppose the correct population model is

yi = �0 + �1x1i + �2x2i + ui;

and suppose our goal is to estimate �1. Think of yi as log earnings, x1i as years of schooling, and x2i

worker ability. We assume that x1 and x2 are uncorrelated with the residual:

Cov (x1; u) = Cov (x2; u) = 0:

Hence, had we observed both x1 and x2, OLS would have been �ne.

However, suppose we observe earnings and schooling, but not ability. If we estimate the model

y = 
0 + 
1x1 + "i;

it must be that "i = (�2x2i + ui). How will this a¤ect the estimate of 
1? In particular, is the OLS

estimate of 
1 a consistent estimate of �1, the parameter of interest?

Modifying (4.2), we can write

p lim 
̂OLS1 = �1 + p lim

P
i ~x1i (�2~x2i + ui)P

i ~x
2
1i

;

p lim 
̂OLS1 = �1 + �2
Cov (x1; x2)

var (x1)
;

where ~z = z� �z for any variable z denotes sample demeaning. Hence, 
̂OLS1 will be a consistent estimator

of �1 if �2 = 0 or if Cov (x1; x2) = 0: In the context of an earnings function this seems unlikely - given

the model, the OLS estimate will probably be upward biased (why upward?).
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5.2. Measurement Error

Thus far it has been assumed that the data used to estimate the parameters of our models are true

measurements of their theoretical counterparts. In practice, this situation happens only in the best of

circumstances. When we collect survey data in developing countries, for instance, we try very hard to

make sure the information we get from the respondents conforms as closely as possible to the variables

we have in mind for our analysis - yet it is inevitable that measurement errors creep into the data.

And aggregate statistics, such as GDP, investment or size of the workforce are only estimates of their

theoretical counterparts.

Measurement errors may well result in (econometric) endogeneity bias. To see this, consider the

classical error-in-variables model. Assume that the correct population model is

yi = �0 + �1x1i + ui:

Hence, with data on y and x1, the OLS estimator would be �ne. Now, suppose we do not observe x1 -

instead we observe a noisy measure of x1, denoted xobs1 , where

xobs1i = x1i + vi;

where vi is a (zero mean) measurement error uncorrelated with the true value x1i: The estimable

equation is now

yi = �0 + �1x
obs
1i + ei; (5.1)

where ei = (ui � �1vi) : Because the measurement error is a) correlated with xobs1i and b) enters the
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residual ei, the OLS estimate of �1 based on (5.1) will be inconsistent:

p lim �̂
OLS

1 = �1 + p lim

P
i ~x

obs
1i eiP

i

�
~xobs1i

�2 ;
p lim �̂

OLS

1 = �1 + p lim

P
i (~x1i + vi) (ui � �1vi)P

i (~x1i + vi)
2 ;

p lim �̂
OLS

1 = �1 +
��1�2v
�2~x1 + �

2
v

;

p lim �̂
OLS

1 = �1

�
�2x1

�2x1 + �
2
v

�

where �2x1 is the variance of the true explanatory variable and �
2
v is the variance of the measurement

error. Three interesting results emerge here:

� First, p lim �̂
OLS

1 will always be closer to zero than �1, so long as �
2
v > 0, i.e. so long as there

are measurement errors of the current form. This is often referred to as attenuation bias in

econometrics ("iron law of econometrics").

� Second, the severity of the attenuation bias depends on the ratio �2x1=�
2
v, which is known as the

signal-to-noise ratio. If the variance of x1 is large, relative to the variance of the measurement

error, then the attenuation bias will be small, and vice versa.

� Third, the sign of p lim �̂
OLS

1 will always be the same as that of the structural parameter �1. Hence,

in this model, measurement errors will not change the sign on your coe¢ cient (asymptotically).

The attenuation bias formula is an elegant result. Things become much more complicated when we

have more than one explanatory variable. Even if only one variable is measured with error, all estimates

of the model will generally be inconsistent. And if several variables are measured with error, matters

become even more complex. Unfortunately, the sizes and the directions of the biases are di¢ cult to

derive, and above all di¢ cult to interpret, in the multiple regression model.

Not all forms of measurement errors cause substantive problems however. Measurement errors in the

dependent variable, for example, increase the standard errors (more noise in the residual) but do not

result in inconsistency of the OLS estimator.
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5.3. Simultaneity

Simultaneity arises when at least one of the explanatory variables is determined simultaneously along

with the dependent variable. Consider for example the following simultaneous population model:

y1 = �0 + �1y2 + �2x1 + u1; (5.2)

y2 = �0 + �1y1 + �2x2 + u2; (5.3)

where the notation is obvious. Suppose my goal is to estimate (5.3). The problem is that y1; both

determines, and depends on, y2. More to the point, because u2 a¤ects y2 in (5.3) which in turn a¤ects

y1 through (5.2), it follows that u2 will be correlated with y1 in (5.3).

To see this, write down the reduced form for y1 - you will see that it depends on u2.
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6. The Proxy Variable-OLS Solution to the Omitted Variables Problem

Serious problems thus emerge when a regressor is endogenous. All is not lost however. As we will see in

this section, OLS may still provide consistent estimates of the parameters of interest if a proxy variable

is available. Alternatively, we might be able to use instrumental variable or panel data techniques - more

on this later.

Consider the following model

y = �0 + �1x1 + �2x2 + :::+ �KxK + 
q + u; (6.1)

where q is an omitted (unobservable) variable. We want to estimate the partial e¤ects of the observed

variables, holding the other relevant determinants, including q, constant. As we�ve already seen in (4.2),

if we simply estimate the model whilst putting q in the error term (on the grounds that it is unobserved),

there will be omitted variables bias if q is correlated with one or several of the x-variables.

Now suppose a proxy variable z is available for the unobserved variable q. As the name suggests,

this is a variable thought to be highly correlated with the unobserved variable q, and so we might be able

to reduce or eliminate the bias in the estimated �j if we include z in the set of explanatory variables.

There are two formal requirements for a proxy variable for q:

1. The proxy variable must be redundant in the structural equation (6.1):

E (yjx; q; z) = E (yjx; q) :

This is pretty obvious and uncontroversial - if z is already in the model for structural reasons, then

clearly it cannot be used to proxy for an omitted variable as well.

2. The proxy variable must be such that the correlation between the omitted variable q and each xj

goes to zero, once we condition on q.
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Let�s have a closer look at the second condition. De�ne

q = �0 + �1z + r;

where r should be thought of as variation in q not correlated with z. Note that this equation should not

be given a causal interpretation. The reason is that �0 + �1z is de�ned simply as the linear projection of

q on z: For z to be a good proxy for q, we then require:

E (r) = 0 (holds by def.)

Cov (z; r) = 0 (holds by def.)

�1 6= 0 (if not, useless proxy)

Cov (xj ; r) = 0 (crucial!).

The last condition thus requires z to be closely enough related to q so that once it is included in the

regression, the xj are not partially correlated with q.

� To see that this works - under the conditions stated above - we rewrite the structural equation as

y = �0 + �1x1 + �2x2 + :::+ �KxK + 
 (�0 + �1z + r) + u

y = (�0 + �0) + �1x1 + �2x2 + :::+ �KxK + 
�1z + (
r + u) :

You now see the assumption Cov (xj ; r) = 0 really is crucial.

� EXAMPLE: Proxying unobserved ability by IQ in an earnings regression (clearly IQ is not the same

as ability, but we may reasonably suppose that IQ is correlated with ability). See Section 2 in the

appendix.

� This all sounds rather promising, but it must be stressed that using a proxy variable can still lead

to bias - in the model above this would happen if r is correlated with xj , as already noted. In
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the context of the Blackburn-Neumark regression, this could happen if, conditional on IQ, there

remains a correlation between education and ability. Of course, the resulting bias may still be

smaller than if we ignored the problem of omitted ability entirely.

� Hence the rule of thumb (again): A good proxy must be such that, conditional on the proxy variable,

the unobserved variable does not vary with the observed variable(s).

� Sometimes it is helpful to have several proxy variables. Consider Tables 2.3-4 in the appendix,

where we bring in KWW (a test score on the knowledge of the world of work) as an additional

proxy for ability.
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7. Instrumental Variables Estimation

7.1. Setting the scene

Reference: Wooldridge, Chapter 5.

The Instrumental Variables (IV) approach recognizes that the residual and the explanatory variable(s)

may be correlated, and uses additional information to �purge�the endogenous explanatory variable(s) of

the part correlated with the residual in the structural equation. Consider a linear population model

y = �0 + �1x1 + �2x2 + :::+ �KxK + u; (7.1)

where E (u) = 0; and cov (xj ; u) = 0; for j = 1; 2; :::;K � 1, but where xK might be correlated with u.

Thus, while x1; x2; :::; xK�1 are all exogenous, xK is potentially endogenous.

In general, there may be several endogenous regressors, but for now it is helpful to concentrate on

the case where there is at most one. Of course, xK may be endogenous for any of the reasons discussed

above, but, for the current purposes, it does not matter why xK is endogenous.

Let�s assume there is an omitted (unobserved) variable q that is a component of the residual, u = q+e,

and also potentially correlated with xK . You might �nd it helpful to think of (7.1) as an earnings equation,

where xK is years of schooling and q is unobserved ability. In any case, as we saw above, if cov (q; xK) 6= 0,

then OLS estimation of (7.1) generally results in inconsistent estimates of all the coe¢ cients in the model.

The method of IV provides a general solution to problems posed by the presence of one or many

endogenous explanatory variables in the model. To use this method we need an observed variable z1;

referred to as an instrument, that satis�es two conditions.

The �rst condition is that the instrument is exogenous, or valid:

cov (z1; u) = 0:

This is often referred to as an exclusion restriction, on the grounds that z1 is excluded from the
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structural equation (7.1).

The second condition is that the instrument is informative, or relevant. This means that the

instrument z1 must be correlated with the endogenous regressor xK , conditional on all exogenous variables

in the model (i.e. x1; x2; :::; xK�1). That is, if we assume there is a linear relationship between xK and

z1 and x1; x2; :::; xK�1;

xK = �0 + �1x1 + �2x2 + :::+ �K�1xK�1 + �1z1 + rK ; (7.2)

where rK is mean zero and uncorrelated with all the variables on the right-hand side, we require �1 6=

0. Notice that if there are no exogenous variables in the structural model, this condition reduces to

cov (z; xk) 6= 0; which may be easier to relate to ("the instrument must be correlated with the endogenous

explanatory variable"). The equation (7.2) is often referred to as the reduced form equation for xK .

As this name suggests, there is nothing necessarily structural about this equation. For example, if you

assume that, in the earnings equation, work experience is exogenous and schooling endogenous, then the

reduced form equation for schooling contains work experience as an "explanatory" variable. This does

not make sense in a structural sense (the future can�t determine the past...), but it is �ne as a reduced

form relationship.

Based on the reduced form equation for xK ; we can obtain a reduced form equation for the dependent

variable of interest (i.e. y, or "earnings"), by plugging (7.2) into (7.1):

y = �0 + �1x1 + �2x2 + :::+ �K�1xK�1 + �1z1 + v;

where the reduced form parameters �0; :::; �K�1; �1 are functions of the structural parameters �0; :::; �K .

You can easily verify that, given the assumptions we have made above, the residual v is uncorrelated

with all the explanatory variables on the right-hand side. Thus the reduced form equation for y can be

estimated consistently using OLS. Estimating reduced form parameters is sometimes useful, for example

if the analysis is essentially descriptive. As we shall see later, reduced form equations can also be very
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useful in the context of hypothesis testing. However, if we want to pin down the causal e¤ect of xK on

expected y, we have to estimate the parameters of (7.1).

Let�s end by discussing some variables that may or may not be valid instruments for education in an

earnings equation.

Which of the following variables do you think could be a good instrument for education?

� The individual�s wage last year;

� Number of siblings;

� The individual�s IQ;

� Mother�s education.

It is vital to understand the di¤erence between a proxy variable and an instrument. In fact, a good

proxy variable typically makes a particularly bad instrument. Make sure you understand why.
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1. OLS: Illustration of heteroskedasticity 
 
Earnings and education in Kenya 
Researchers wish to estimate the effect of years of education on earnings in Kenya, using a 
sample of 950 individuals drawn randomly from the population of wage employees in the 
manufacturing sector. Data on monthly wages and years of education are available, collected in 
2000. The basic earnings model is as follows: 
 

iii residualedlw +⋅+= 10 ββ , 
 
where is the natural logarithm of monthly wages (in USD) for individual i,  is years of 
education,  is a residual, and 

ilw ied
iresidual 10 ,ββ  are parameters to be estimated (of course, this 

specification is almost certainly too simplistic to be viewed as a structural model of earnings, we 
use it here for illustrative purposes).  
 
Figure 1.1 Log earnings and years of education: Clear evidence of heteroskedasticity 
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Table 1.1: OLS estimates, variance formula assumes homoskedasticity 
 
. reg lw ed; 
 
      Source |       SS       df       MS              Number of obs =     950 
-------------+------------------------------           F(  1,   948) =  181.38 
       Model |  84.4673729     1  84.4673729           Prob > F      =  0.0000 
    Residual |   441.47884   948  .465694979           R-squared     =  0.1606 
-------------+------------------------------           Adj R-squared =  0.1597 
       Total |  525.946213   949  .554210973           Root MSE      =  .68242 
 
------------------------------------------------------------------------------ 
          lw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          ed |   .1042316   .0077394    13.47   0.000     .0890433    .1194198 
       _cons |   3.169813   .0800051    39.62   0.000     3.012805     3.32682 
------------------------------------------------------------------------------ 
 
/* extract predictions useful for homoskedasticity test */ 
. predict e, res; 
. predict lwhat, xb; 
 
 
Table 1.2: OLS estimates, heteroskedasticity-robust standard errors 
 
. reg lw ed, robust; 
 
Linear regression                                      Number of obs =     950 
                                                       F(  1,   948) =  148.05 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.1606 
                                                       Root MSE      =  .68242 
 
------------------------------------------------------------------------------ 
             |               Robust 
          lw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          ed |   .1042316   .0085662    12.17   0.000     .0874206    .1210425 
       _cons |   3.169813   .0808514    39.21   0.000     3.011144    3.328481 
------------------------------------------------------------------------------ 
 
Table 1.3: Test H0: Error variance constant 
 
. ge e2=e^2; 
. reg e2 ed; 
 
      Source |       SS       df       MS              Number of obs =     950 
-------------+------------------------------           F(  1,   948) =   34.90 
       Model |  25.2475331     1  25.2475331           Prob > F      =  0.0000 
    Residual |  685.772101   948  .723388292           R-squared     =  0.0355 
-------------+------------------------------           Adj R-squared =  0.0345 
       Total |  711.019634   949  .749230384           Root MSE      =  .85052 
 
------------------------------------------------------------------------------ 
          e2 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          ed |   .0569855   .0096459     5.91   0.000     .0380558    .0759152 
       _cons |  -.1013612   .0997131    -1.02   0.310    -.2970452    .0943228 
------------------------------------------------------------------------------ 
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2. The Proxy Variable Approach 
 
IQ as a proxy for ability in the earnings equation  
 
This example, taken from Wooldridge (2002), p.65, illustrates the effects of using IQ as a 
proxy for unobserved ability in an earnings regression. The data, provided in the file 
NLS80, were originally used by Blackburn and Neumark (1992; QJE). 
 
First, I consider OLS results with ability put (implicitly) in the residual: 
 
. use C:\teaching_gbg07\applied_econ07\lectures\wooldat\NLS80.dta, clear; 
 
Table 2.1: Unobserved ability goes into the residual 
 
. reg lwage exper tenure married south urban black educ, robust; 
 
Linear regression                                      Number of obs =     935 
                                                       F(  7,   927) =   50.83 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.2526 
                                                       Root MSE      =  .36547 
 
------------------------------------------------------------------------------ 
             |               Robust 
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       exper |    .014043   .0032386     4.34   0.000     .0076872    .0203988 
      tenure |   .0117473   .0025387     4.63   0.000      .006765    .0167295 
     married |   .1994171   .0396937     5.02   0.000     .1215171    .2773171 
       south |  -.0909036    .027363    -3.32   0.001    -.1446043    -.037203 
       urban |   .1839121   .0271125     6.78   0.000     .1307031     .237121 
       black |  -.1883499   .0367035    -5.13   0.000    -.2603816   -.1163182 
        educ |   .0654307   .0064093    10.21   0.000     .0528524    .0780091 
       _cons |   5.395497   .1131274    47.69   0.000     5.173481    5.617512 
------------------------------------------------------------------------------ 
 

The implied return to education is 6.5%. Now I add IQ as an explanatory variable: 
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Table 2.2: Unobserved ability proxied for by IQ 
 
. reg lwage exper tenure married south urban black educ iq, robust; 
 
Linear regression                                      Number of obs =     935 
                                                       F(  8,   926) =   48.51 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.2628 
                                                       Root MSE      =  .36315 
 
------------------------------------------------------------------------------ 
             |               Robust 
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       exper |   .0141458   .0032382     4.37   0.000     .0077908    .0205009 
      tenure |   .0113951   .0025368     4.49   0.000     .0064166    .0163736 
     married |   .1997644   .0390896     5.11   0.000       .12305    .2764789 
       south |  -.0801695   .0277381    -2.89   0.004    -.1346063   -.0257327 
       urban |   .1819463   .0267419     6.80   0.000     .1294646     .234428 
       black |  -.1431253   .0376459    -3.80   0.000    -.2170064   -.0692442 
        educ |   .0544106    .007273     7.48   0.000     .0401372    .0686841 
          iq |   .0035591   .0009564     3.72   0.000     .0016822    .0054361 
       _cons |   5.176439   .1212236    42.70   0.000     4.938534    5.414344 
------------------------------------------------------------------------------ 
 

The coefficient on education falls to 0.054. The estimated coefficient on IQ is positive 
and statistically significant. Both findings are as one would expect, in this context. 
 
Now add KWW (another test score, this time on the "knowledge of the world of work"): 
 
Table 2.3: Unobserved ability proxied for by IQ and KWW 
 
. reg lwage exper tenure married south urban black educ iq kww, robust; 
 
Linear regression                                      Number of obs =     935 
                                                       F(  9,   925) =   43.68 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.2662 
                                                       Root MSE      =  .36251 
 
------------------------------------------------------------------------------ 
             |               Robust 
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       exper |   .0127522   .0032973     3.87   0.000     .0062811    .0192233 
      tenure |   .0109248   .0025822     4.23   0.000     .0058572    .0159924 
     married |   .1921449    .038701     4.96   0.000     .1161931    .2680968 
       south |  -.0820295   .0277071    -2.96   0.003    -.1364055   -.0276534 
       urban |   .1758226    .026732     6.58   0.000     .1233601     .228285 
       black |  -.1303995   .0391814    -3.33   0.001    -.2072942   -.0535048 
        educ |   .0498375   .0078449     6.35   0.000     .0344417    .0652333 
          iq |   .0031183   .0009589     3.25   0.001     .0012364    .0050001 
         kww |    .003826   .0020365     1.88   0.061    -.0001707    .0078226 
       _cons |   5.175643   .1209569    42.79   0.000     4.938262    5.413025 
------------------------------------------------------------------------------ 
 

4 
 



5 
 

 
Finally, add interaction terms with education to the specification in Table 2.3: 
 
 
. ge ediq=educ*(iq-100); 
 
. sum kww; 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
         kww |       935    35.74439    7.638788         12         56 
 
. scalar kwwbar=r(mean); 
 
. ge edkww=educ*(kww-kwwbar); 
 
 
Table 2.4: Unobserved ability proxied for by IQ and KWW. Education interacted 
with IQ and KWW 
 
 
. reg lwage exper tenure married south urban black educ iq kww ediq edkww, 
robust; 
 
Linear regression                                      Number of obs =     935 
                                                       F( 11,   923) =   37.01 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.2728 
                                                       Root MSE      =  .36127 
 
------------------------------------------------------------------------------ 
             |               Robust 
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       exper |   .0121544   .0032826     3.70   0.000     .0057121    .0185966 
      tenure |   .0107206   .0025668     4.18   0.000     .0056833     .015758 
     married |    .197827   .0383873     5.15   0.000     .1224904    .2731636 
       south |  -.0807609    .027732    -2.91   0.004    -.1351859   -.0263358 
       urban |    .178431   .0267696     6.67   0.000     .1258948    .2309673 
       black |  -.1381481   .0392285    -3.52   0.000    -.2151355   -.0611607 
        educ |    .045241   .0079435     5.70   0.000     .0296517    .0608304 
          iq |   .0048228   .0055537     0.87   0.385    -.0060766    .0157222 
         kww |  -.0248007   .0106484    -2.33   0.020    -.0456986   -.0039028 
        ediq |  -.0001138   .0004174    -0.27   0.785    -.0009329    .0007054 
       edkww |    .002161   .0007877     2.74   0.006     .0006152    .0037068 
       _cons |   6.080006   .5117145    11.88   0.000     5.075747    7.084264 
------------------------------------------------------------------------------ 

 
Interpret these results, and you will have completed Problem 4.11 in Wooldridge (2002) 
in the process. 
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