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1 Introduction

� Most economists agree that innovation and accumulation of modern �xed
capital - plant and equipment - in the private sector are important for
sustainable increases in per capita incomes, and the standard of living
more generally.

� It is sometimes argued that new investment may generate learning exter-
nalities or be the leading channel through which innovations drive growth.

� New technology may also be good for the environment.

� Bottom line: An improved understanding of the determinants of investment
will improve our understanding of some key aspects of economic progress.
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� This lecture provides:

� An introduction to conventional models of investment. These are
linear models suitable for regression analysis - e.g. accelerator, Tobin�s
Q model, Euler equation.

� An introduction to the empirical literature based on conventional
models that studies the e¤ects on investment of

� �nancial constraints; and

� uncertainty

� An introduction to the new investment literature, which typically uses
a structural approach and goes beyond regression analysis when esti-
mating parameters of interest.
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About the theoretical modeling

� Micro to macro. Today, most macro papers on investment build their
model at the level of the �rm. So I will stress models of �rm behaviour.

About the applications

� I focus mostly on the e¤ects of �nancial constraints and uncertainty.

� The investment literature has made signi�cant advances in these areas over
the last 20 years.

� Also, given the current economic climate, understanding uncertainty and
�nancial constraints would seem rather relevant.
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About the empirical methods

� Vast majority of empirical studies based on regression analysis

� Several important papers in the most recent literature go beyond regression
analysis. Instead, they base the estimation of parameters on matching
moments: i.e. real moments, obtained from the data, are matched with
moments simulated numerically based on a theoretical model.

Literature

� The lecture is based on several papers (see bibliography) and you will not
have time to read them all. The current lecture notes are meant to be fairly
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self-contained - in other words if you know and understand the material
in these notes you know enough about investment to pass this part of the
macro course.

� Having said that, I would of course encourage you to consult the underlying
papers in order to get a deeper understanding of the issues.

� Please read at least the introduction for each of the papers listed in the
bibliography.
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2 Conventional Investment Models

Reference: Robert Chirinko (1993) �Business Fixed Investment Spending: Mod-
eling Strategies, Empirical Results, and Policy Implications,� Journal of Eco-
nomic Literature 31, pp. 1875-1911.

Many di¤erent approaches have been used for analyzing investment. Four key
issues arising in such research:

1. Consistency of the theoretical model

2. Characteristics of the technology
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3. Treatment of expectations

4. The impact of prices, quantities, and shocks on investment

Points (1)-(3) revolve around model speci�cation, whereas (4) is mainly an
empirical question. By the early 1990s (when Chirinko wrote his survey article),
many economists argued that the empirical investment literature had basically
failed to provide useful and credible answers to important economic questions
(e.g. regarding the e¤ect of prices on investment). However I think it is fair to
say that, since then, signi�cant progress has been made on the empirical side
too.

An important distinction in the theoretical modelling of investment concerns
how the dynamics are introduced. Early work in the literature derived dynamic

8



investment equations by adding lags, in a rather ad hoc fashion, to an equation
based on the static �rst order condition (f.o.c.) for capital. Such models are
referred to by Chirinko as models with implicit dynamics. Let�s have a look at
this class of models.
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2.1 Models with implicit dynamics

Suppose the �rm chooses capital in order to maximize pro�ts Assuming that the
production function exhibits constant elasticity of substitution between capital
and variable inputs (labour, intermediate inputs), the static �rst-order condition
for capital is

K�t = �YtC
��
t ; (1)

where � is the elasticity of substitution between capital and , � is a technology
parameter and

Ct = p
I
r (rt + �)

is the user cost of capital (I abstract from various taxes a¤ecting the user cost;
see Chirinko). To obtain an investment equation from (1), we distinguish be-
tween net investment, Int (changes to the capital stock after depreciation), and
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replacement investment, Irt (the expenditure necessary to prevent the capital
stock from diminishing due to depreciation):

It = I
n
t + I

r
t :

� Assume that net investment is determined by a distributed lag on new
orders:

Int =
JX
j=0

�j�K
�
t�j: (2)

You might wonder where the lags come from. This expression has no
formal theoretical justi�cation, really; rather it is written as a distributed
lag in order to capture the fact(?) that it takes some time between the
occurrence of a shock to desired capital, �K�t�j; and the ordering or
installation of new capital.
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� Replacement investment is simply

I
g
t = �Kt�1:

� Using these ingredients, we can obtain what Chirinko refers to as the
Neoclassical Model of Investment:

It = I
n
t + I

r
t = �Kt�1 +

JX
j=0

�j�
�
Yt�jC

��
t�j

�
+ ut;

where ut is an error term. This is clearly a dynamic equation, but note
that the origins of the dynamics are basically ad hoc.

� Special case I: Set � = 0 (e.g. Leontief technology) and you get the
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�exible accelerator model:

It = I
n
t + I

r
t = �Kt�1 +

JX
j=0

�j�Yt�j + ut;

implying that quantity shocks (think output) impact on investment, whereas
shocks to the user cost of capital (e.g. in the form of a reduction in inter-
est rate) will have no e¤ect other than through Y (it�s perfectly possible
that a reduction in the interest rate raises consumer demand, for example
- hence it would be wrong to argue that monetary policies can�t impact on
investment in this model).

� Special case II: Set � = 0 (e.g. Leontief technology) and J = 0 and you
get the simple accelerator model:

It = I
n
t + I

r
t = �Kt�1 + �0�Yt + ut;
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which is similar to the �exible accelerator model except that an output
shock in period t has no direct e¤ect on investment beyond period t.
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2.1.1 Critique - revisiting the "four issues"

1. Consistency of the theoretical model

(a) Output and capital are chosen simultaneously by the �rm. It is therefore
inappropriate to treat output shocks as exogenous in empirical work
based on the accelerator model, for example:

It = I
n
t + I

r
t = �Kt�1 +

JX
j=0

�j�Yt�j + ut:

(b) Awkward theoretical inconsistency: Desired capital is derived under the
assumption that the delivery of the capital goods is immediate, yet in
order to derive the dynamic neoclassical investment equation we have
to add distribution lags.
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(c) Desired capital may not be de�ned, for instance under perfect compe-
tition and constant returns to scale. Hence to use this model we must
assume the pro�t function is non-homogeneous (strictly concave).

2. Characteristics of the technology

(a) Vintage e¤ects. You may not be able to alter the way (proportions)
other inputs (e.g. labour, intermediate inputs) are combined with cap-
ital once the capital stock has been installed (�putty-clay�). Has impli-
cations for the dynamics.

(b) Constant geometric depreciation is dubious.

3. Treatment of expectations
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(a) The neoclassical model mis-speci�ed unless �rms hold static expecta-
tions (= expect everything to always be the same as now). In the
presence of non-static expectations and delivery lags, you need to add
lags in the shocks to the user cost of capital, and in output shocks,
separately (see eq. 6 in Chirinko).

(b) The Lucas Critique: Problematic to evaluate the e¤ects of a policy
change based on a non-structural regression model, since policy likely
impacts on coe¢ cients in an unknown way.

4. The impact of prices, quantities, and shocks on investment

(a) No clear-cut empirical answer as to the relative roles of output and
prices (ucc) as determinants of investment. Chirinko argues, however,
that the evidence is in favour of output - not prices - being the dominant
determinant of investment.
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Response to this: I think it�s fair to say that signi�cant progress has been made
with regards to (1) and (3). The points in (2) are (much) less emphasized now
than they were in the 1980s and early 1990s. Regarding (4), I�d say this type
of question is no longer as central as it used to be in empirical research. Today,
the two main questions in empirical research on investment concern the role of
�nancial constraints, and uncertainty.
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2.2 Models with explicit dynamics

Following the Lucas critique, theories of investment changed in two fundamental
ways.

� Models in which the dynamics were added in an ad hoc way were no
longer thought appropriate. Instead, the dynamics should follow from the
underlying theory of pro�t maximization. Adjustment costs became an
important model ingredient, as a result.

� Rational expectations. Firms are assumed to understand, and behave
according to, the model written down by the economist. Expectations
therefore need to be consistent with the model.
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2.2.1 The benchmark model

� Intertemporal optimization: Underlying this class of model is the as-
sumption that the �rm�s objective is to maximize the value of the
�rm, de�ned as the present discounted value of all (expected) future pro�t
streams:

Vt = max
Lt;Kt

Et

1X
s=t

�
1

1 + r

��(s�t)
� (Ls;Ks; Is; �s) ;

subject to the capital evolution constraint

Kt = (1� �)Kt�1 + It;

where Vt de�nes the value of the �rm at time t, r is the one-period
(constant) discount rate, �t is pro�ts, Kt is physical capital, Lt is labour,
It is investment, and � is the constant depreciation rate.
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� Assumptions:

� The �rm is a price-taker in input and output markets.

� Output Yt is determined by labour Lt, capital Kt and a technology
shock � t:

Yt = F (Lt;Kt; � t) ;

where F (:) denotes the production function.

� The purchase price of capital is denoted pIt .

� Capital is "quasi-�xed", in the sense that changing the capital stock
is associated with adjustment costs, represented by G (It;Kt; � t). A
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very common functional form is the quadratic speci�cation

G (It;Kt; � t) =
�
�

2

� "
It

Kt
� � t

#2
Kt;

implying that adjustment costs increase at an increasing rate. Too
rapid accumulation of capital is thus very costly. More on this below.

� Labour is perfectly �exible (no adjustment costs) and can be hired at
wage rate wt.

� Capital depreciates at a constant rate �, so that

Kt = (1� �)Kt�1 + It:

� The price of output is normalized to 1.
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� Under these assumptions, the �rm�s optimization problem can be expressed
as follows:

Vt = max
Lt;Kt

Et

1X
s=t

�
1

1 + r

��(s�t)
fF (Lt;Kt; � t)�G (It;Kt; � t)

�pIt It � wtLtg;

subject to

Ks = (1� �)Ks�1 + Is:

This can be re-written as a Bellman equation:

Vt = max
Lt;Kt

fF (Lt;Kt; � t)�G (It;Kt; � t)� pIt It � wtLt

+�EtVt+1g;

where � = (1 + r)�1, subject to the capital evolution constraint. This is
not how Chirinko presents the problem, but since this way of proceeding
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is very common in the current literature I adopt the Bellman equation
approach. Based on this maximization problem, optimal labour and capital
will satisfy the following conditions:

� Labor:

FL (Lt;Kt; � t) = wt;

i.e. a standard non-dynamic �rst-order condition.
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� Investment:

GI (It;Kt; � t) + p
I
t = FK (Lt;Kt; � t)

�GK (It;Kt; � t) + �Et
@Vt+1
@Kt

GI (It;Kt; � t) + p
I
t = FK (Lt;Kt; � t)

�GK (It;Kt; � t) + � (1� �)Et
@Vt+1
@Kt+1

:

� Using the quadratic adjustment cost function

G (It;Kt; � t) =
�
�

2

� "
It

Kt
� � t

#2
Kt;

we have

GI (It;Kt; � t) = �

"
It

Kt
� � t

#
;
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and so we can write the f.o.c. for investment as

�

"
It

Kt
� � t

#
+ pIt =

@Vt

@Kt
;

where
@Vt

@Kt
= FK (Lt;Kt; � t)�GK (It;Kt; � t) + � (1� �)Et

@Vt+1
@Kt+1

denotes the shadow value of capital (the increase in the �rm value that
would result if the �rm were �given�another unit of physical capital). This
gives us the following benchmark model:

It

Kt
=
1

�

 
@Vt

@Kt
� pIt

!
+ � t; (3)

where the error term is interpretable as an adjustment cost shock.

� This equation is straightforward to interpret: whenever there is a discrep-
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ancy between the shadow value of capital and the unit purchase price,
the �rm has an incentive to change the capital stock - but its actions are
tempered by the adjustment cost parameter �.

� Clearly, the higher is �, the more slowly investment responds to changes
in the underlying �desire�to invest.

� Attractive features of (3):

� Derived directly from an optimization problem - hence not "ad hoc".

� Rational expectations

� Even the error term has a theoretical interpretation (what is it?).
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� How can it be used empirically?

� The operational problem is to relate @Vt
@Kt

to observable variables. At the
time when Chirinko wrote his paper the two most popular approaches were
the q model and the Euler equation approach.
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2.2.2 q models

� From an empirical point of view, the benchmark model is not very useful
unless the shadow value of capital, @Vt@Kt

, which is often termed marginal
q, can be expressed in terms of observables.

� De�ne Tobin�s average q as the ratio of the value of the �rm Vt to the
replacement cost of its existing capital stock:

qAt =
Vt

pItKt
:

� Hayashi (1982) showed that

Vt =
@Vt

@Kt
Kt
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under the following assumptions:

� Product & factor markets are competitive

� Production and adjustment cost technologies are linear homogeneous
(constant returns)

� Capital is homogeneous

� Investment decisions are separate from other real & �nancial decisions.

30



� Under these assumptions, we can re-write the benchmark model as follows:

It

Kt
=

1

�

 
@Vt

@Kt
� pIt

!
+ � t

It

Kt
=

1

�

 
Vt

Kt
� pIt

!
+ � t;

It

Kt
=

1

�

�
qAt � 1

�
pIt + � t;

It

Kt
= (1=�) qt + � t;

where qt =
�
qAt � 1

�
pIt .

� This is very useful from an empirical point of view, since qAt is straight-
forward to measure; all we need are data on the value of the �rm (stock
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market data are often used) and the replacement value of the capital
stock (available from the balance sheet).

� Equipped with such data the applied researcher can thus run regress in-
vestment rates on some measure of q and identify the adjustment cost pa-
rameter � (the pIt is often suppressed, appealing to constant input prices
across �rms, or, if the data have a time series dimension, represented by a
time trend or time dummies).

� Equipped with an estimate of � we can predict how strongly investment
will respond to shocks a¤ecting the �rm value (e.g. a cut in interest rates
or a positive demand shock).
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� Note that the problem of unobservable expectations is solved by equating
a forward-looking variable, i.e. the marginal e¤ect of capital on discounted
expected future pro�ts, to one that is observable, i.e. the average q.

� Note that average q controls for "everything": conditional on average q,
no other variable should determine investment (assuming pIt is constant
in the cross-section of �rms). Hence, average q is said to be a su¢ cient
statistic for investment. As we will see below, this is a useful starting
point when testing for the e¤ects of �nancial constraints on investment.

Potential problems

� If stock market data are used to determine the value of the �rm (which is
the most common approach), it is clearly important that the stock market
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gets the valuation of the �rm right. That it does should not be taken for
granted - think of share price bubbles for example - in which case marginal
q is e¤ectively measured with error.

� Furthermore, the capital stock may be measured with error too. This may
lead to bias in the estimate of the adjustment cost parameter.

� Another reason why the average q approach is potentially problematic is
that the underlying assumptions appear quite restrictive - especially per-
fect competition and constant returns to scale. While it may be possible
approximate of marginal q under imperfect competition or decreasing re-
turns to scale, it is not - as far as I know - possible to express marginal q
in terms of observables exactly.
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� And of course adjustment costs may not in fact be quadratic, in which
case the model will be mis-speci�ed.

� The q model�s empirical performance has not been very satisfactory. A
key disturbing fact is that estimates of the coe¢ cient on average q typically
are rather low (less than 0.05 usually) implying very (implausibly) high
adjustment costs. Summers (1981), cited on p.1892 in Chirinko, obtains
� = 32, which implies that 20 years after an unexpected change in the
economic environment, the capital stock would have moved only 75% of
the way to the new steady-state value.
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2.2.3 Euler equations

Our benchmark model (re-arranged; and with ut replacing � t in the adjustment
cost function):

�

 
It

Kt
� u

!
+ pIt =

@Vt

@Kt
: (4)

We saw in the previous section how, under certain assumptions, can be written
as an equation in which investment depends on average q.

� An alternative route open to us is to use the structure of the model to derive
the Euler equation for investment. The Euler equation can be derived in
di¤erent ways; one straightforward approach is as follows:
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� First, decompose the shadow value of capital:
@Vt

@Kt
= FK (Lt;Kt; � t)�GK (It;Kt) + � (1� �)Et

@Vt+1
@Kt+1

:

� Second, write the benchmark model in t+1 and take expectations on both
sides:

�Et

 
It+1
Kt+1

� u
!
+ Etp

I
t+1 = Et

 
@Vt+1
@Kt+1

!
:

Multiply by � (1� �):

� (1� �)Et
 
@Vt+1
@Kt+1

!
= � (1� �)�Et

 
It+1
Kt+1

� u
!

+� (1� �)EtpIt+1:
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� Third, use this expression in the decomposition of the shadow value of
capital:

@Vt

@Kt
= FK (Lt;Kt; � t)�GK (It;Kt)

+� (1� �)�Et
 
It+1
Kt+1

� u
!
+ � (1� �)EtpIt+1:

� Fourth, plug this into the benchmark model:

�

 
It

Kt
� ut

!
+ pIt =

@Vt

@Kt
;
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�

 
It

Kt
� u

!
+ pIt = FK (Lt;Kt; � t)�GK (It;Kt)

+� (1� �)�Et
 
It+1
Kt+1

� u
!

+� (1� �)EtpIt+1:

� Finally, write Xt+1 = Et [Xt+1] + �t+1, where �t+1 denotes a forecast
error, and use the functional form of the adjustment cost function to pa-
rameterize GK (It;Kt): 

It

Kt

!
= cons+ � (1� �)

 
It+1
Kt+1

!
+
�
1

�

�
FK (Lt;Kt; � t)

+
�
1

2

� 
It

Kt

!2
+
� (1� �)

�
pIt+1

�
�
1

�

�
pIt + e�t+1;

39



where cons is a constant and e�t+1 combines the forecast errors for invest-
ment and the purchase price of capital (cf. eq. 20 in Chirinko).

� You see how we have now expressed the benchmark model as a dynamic
investment equation, where the key ingredients are readily observable
(you need to add a parametric expression for FK - any suggestions?).

� Note: Because the error term is correlated with the regressors (e.g. because
forecast errors are correlated with variables in period t + 1) instrumental
variables are needed in estimation.

Potential problems
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� Whilst theoretically elegant the Euler equation has not worked very well in
practice.

� Notice that the theory implies strong restrictions on what you should get
on the right-hand side variables when estimating the Euler equation: 

It

Kt

!
= cons+ � (1� �)

 
It+1
Kt+1

!
+
�
1

�

�
FK (Lt;Kt; � t)

+
�
1

2

� 
It

Kt

!2
+
� (1� �)

�
pIt+1

�
�
1

�

�
pIt + e�t+1;

Very often, what you get in practice, is inconsistent with the theoretical
model based on which the Euler equation is derived (e.g. the estimate of
� (1� �) is often larger than 1). This, I think, has been pretty devastating

41



for the Euler equation approach which is now less common in the literature
than 10-15 years ago. See Toni Whited�s paper entitled "Why do Euler
equations fail?" for some clues as to why the investment Euler equation
rarely performs well in practice.

� Also, as mentioned above, we need instruments to identify the equation,
and �nding valid instruments is no easy task.
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3 Empirical Research on Investment

There is a large empirical literature investigating the determinants of invest-
ment. Lots of di¤erent topics and mechanisms have been examined. I will
focus on �nancial constraints and uncertainty. In this section I focus on em-
pirical research in the traditional vein, i.e. research based on linear models
suitable for regression analysis. In the �nal section I provide an introduction
to the "new" investment literature, which typically uses a structural approach
and goes beyond regression analysis when estimating parameters of interest.

3.1 Application: Investment and Financial Constraints

� Recall that one of the assumptions needed for it to be valid to replace
marginal by average q is that investment decisions are made separately
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from �nancial decisions.

� This may be a reasonable assumption if �nancial markets are so well de-
velop so as to make internal and external (debt, new equity) �nance perfect
substitutes.

� However, in a world where there are "imperfections" in �nancial markets,
the cost of using external funds may exceed the cost of using internal funds.

� To illustrate, forget for a moment about investment dynamics; assume that
optimal capital is chosen by the �rm so as to equate the marginal revenue
product of capital to the marginal cost:

MPK =MC:
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Suppose that MPK is decreasing in capital due to diminishing returns;
and suppose using external funds is more expensive than internal funds.

� [Discuss Figure 1 and 2]
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Figure 1   Static Demand for Capital
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Figure 2    A Cash Flow Shock
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� The most common empirical test for �nancing constraints adopted in the
literature is that proposed by Fazzari, Hubbard and Petersen (1988; hence-
forth FHP). This approach involves investigating the sensitivity of invest-
ment to changes in cash-�ow, conditional on average Q. Average Q, de-
�ned as the ratio of the value of the �rm to the value of the capital stock,
is included in the model in order to take into account other factors than �-
nancial constraints that might be a¤ecting investment, for example strong
demand or low interest rates.

� The basic idea underlying this �excess sensitivity� approach is that, un-
der the null hypothesis of no �nancing imperfections (and a number of
other assumptions; see Hayashi, 1982, for details) the only determinant of
investment is average Q:

I

K
= �+ � �Q+ "
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� If we �generalize�this equation as follows:
I

K
= �+ �Q+ 


C

K
+ ";

where C
K denotes cash-�ow divided by the capital stock, we thus have


 = 0 under the null of no �nancing constraints (and all other assumptions
underlying the q model).

� If cash-�ow is found a signi�cant determinant of investment conditional
on Q, we say there is excess sensitivity of investment to cash-�ow.

� This means that the null hypothesis that average Q is a su¢ cient statis-
tic for investment is rejected, which is often taken as a sign of �nancial
imperfections.
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� FHP also report results split tests, dividing the sample into a priori �un-
constrained�and �constrained�sub-samples (e.g. based on size, dividends,
credit rating, etc.). They �nd that

� the coe¢ cient on cash �ow is positive for all sub-samples,

� that the coe¢ cient on cash �ow is larger for �constrained�sub-samples
than for �unconstrained�subsamples.

� One interpretation (e.g. FHP (1988)): Sub-samples with higher coe¢ -
cients on cash �ow are �more constrained�, e.g. face a higher cost premium
for external �nance.

[Illustration, Figure 3]
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Figure 3    Cost Premia uH > uL
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3.1.1 The Kaplan and Zingales (1997) critique

� The approach proposed by Fazzari, Hubbard and Petersen (1988) was very
in�uential in the early and mid 1990s. However, Kaplan and Zingales
(1997) argue that this approach is �awed, as cash-�ow sensitivities provide
no useful information about the severity of �nancing constraints.

� Kaplan and Zingales show that the investment-cash �ow sensitivity may
actually be higher for �rms facing more modest �nancial constraints, if
the marginal product of capital is su¢ ciently convex.

[Illustration, Figure 4]
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Figure 4    The Kaplan-Zingales Case
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� The Kaplan-Zingales argument is developed for a static model with no
adjustment costs, and in which new equity is the only source of external
�nance, with an increasing cost premium

� Cost premium for external funds implies investment may display excess
sensitivity to windfall �uctuations in internal funds.

� But investment-cash �ow sensitivity may be lower for �rms with higher
cost of external �nance, if MPK is su¢ ciently convex

� This is their key result: No monotonic relationship between investment-
cash �ow sensitivity and the severity of the capital market imperfection

� Numerous authors have accepted this criticism, and consequently eschew
the excess sensitivity approach (see e.g. Cleary, 1999; Moyen, 2004).
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3.1.2 Bond & Söderbom (2011) on the Kaplan-Zingales critique

� As already noted, the empirical literature on investment and �nancing
constraints building on FHP is typically based on speci�cations like

I

K
= �+ � �Q+ 


�
C

K

�
+ ":

� Formally: a test of the null of no sensitivity to cash �ow, conditional
on a measure of q, consistent with null of no �nancing constraints (and
otherwise correct speci�cation of the q model, and appropriate measure of
q)

� The Kaplan and Zingales (1997) result does not invalidate this test, since
q is not conditioned on in their model.
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� Kaplan and Zingales purport to say something about the value of 
 under
the alternative. Their own empirical work adopts this speci�cation.

� But their analysis of unconditional investment-cash �ow sensitivity in a
static demand for capital model may not be informative about conditional
investment-cash �ow sensitivity in a dynamic investment model with ad-
justment costs

� Bond-Söderbom emphasize the importance of conditioning on measures of
q in order to understand the behaviour of the coe¢ cient on cash �ow in
such regressions.

� As we have seen, the null speci�cation recognizes role of adjustment costs:
capital stock does not adjust to maintain MPK = u, even in absence of
�nancing constraints.
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� As we have seen, the relevant FOC equates marginal cost of additional unit
of investment with shadow value of additional unit of capital (marginal q).

� The curvature of MPK plays no direct role.

� Usual linear econometric speci�cation further requires marginal adjustment
costs to be linear in the investment rate (quadratic adjustment costs).

Questions

� Can we say something about the sensitivity of investment to cash �ow
conditional on marginal q in an adjustment costs framework?
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� Is there a monotonic relationship with the cost premium for external �-
nance?

� Can we measure marginal q using average q in a model with costly external
�nance?

Approach

� Recall the speci�cation proposed by FHP (and criticized by KZ):

I

K
= �+ � �Q+ 


�
C

K

�
+ ":
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� This is a theoretically correct speci�cation only if 
 = 0. The model is
then consistent with absence of �nancial imperfections.

� If there are �nancial imperfections, we know the basic q model is mis-
speci�ed. It would seem plausible that investment should be sensitive to
cash-�ow changes in such a case - but we�re not sure what the correct
model speci�cation would look like.

� Bond-Söderbom generalize the q model to explicitly allow for high exter-
nal �nance costs. All other assumptions needed to replace marginal by
average q are maintained (e.g. constant returns, perfect competition etc.)
Speci�cally, they assume the cost of issuing new equity (needed to fund
investment) is rising at a quadratic rate in the amount issues:

�(Kt; Nt) =
�
�

2

� 
Nt

Kt

!2
Kt;
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where Nt is the amount of new equity and � is a parameter that speci�es
the slope of the cost premium for external �nance. Think of �(Kt; Nt) as
a transaction fee that must be paid to third parties when new shares are
issued.

� Using debt is also costly, which is modeled by means of an increasing
interest rate schedule

i(Kt+1; Bt) = i+ �

 
Bt

Kt+1

!
where i is the interest rate at zero borrowing, Bt is the debt inherited from
the last period, and � > 0 is a parameter which allows the interest rate to
increase with the debt-assets ratio.
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� For this generalized version of the model, Bond-Söderbom show that the
correct speci�cation of the investment equation is:

It

Kt
=
�
� � 1

b

�
+
1

b
Qt �

�

b

" 
Qt �

Bt

Kt+1

! 
Nt

Kt

!#
where Qt denotes average q.

� Intuition?

� Note that this model can be estimated directly, given data on investment
rates, average q, debt, and the value of new shares issued. The coe¢ cients
estimated are structural parameters of the adjustment cost function or the
cost premium function for new equity. Notice that the debt cost premium
parameters are not identi�ed from this speci�cation.
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� However, we seem to have lost track of the questions with which we began:

1. Can we say something about the sensitivity of investment to cash �ow
conditional on marginal q in an adjustment costs framework?

2. Is there a monotonic relationship with the cost premium for external
�nance?

3. Can we measure marginal q using average q in a model with costly
external �nance?

� In fact, it is straightforward to show that the answer to question (3) is
"yes" - see our paper for details, if you are interested.

� To answer (1) and (2), we need to understand how (C=K) correlates
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with the term
�
Qt � Bt

Kt+1

� �
Nt
Kt

�
. This is hard (impossible?) to establish

analytically, so we use simulations.

� Simulations: Use the correct theoretical model and simulate an arti�cial
panel dataset of �rms. Regress investment on average q and cash-�ow in
the same way as you would with real data.

� [Results in Table 3; Table 4 shows estimates of structural model]
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Table 3. Excess Sensitivity Tests: Costly New Equity & Costly Debt

(i) (ii) (iii) (iv)

� = 0 � = 1 � = 2 � = 4
� = 0 � = 0:25 � = 1:0 � = 20

Qt 0.2034 0.1962 0.1894 0.1711
(.0029) (.0029) (.0030) (.0031)

Ct
Kt

-0.0046 0.0129 0.0462 0.1026
(.0069) (.0072) (.0073) (.0073)

R2 0.26 0.25 0.26 0.25

See Table 1 for notes.

Table 4. Structural Model Estimates

(i) (ii) (iii) (iv)

� = 0 � = 1 � = 2 � = 4
� = 0 � = 0:25 � = 1:0 � = 20

Qt 0.2021 0.1997 0.2026 0.2012
(.0021) (.0021) (.0021) (.0021)�

Qt � Bt
Kt+1

�
� Nt

Kt
-0.0001 -0.1598 -0.4460 -0.8188

(.0018) (.0491) (.0476) (.0450)

R2 0.26 0.25 0.26 0.26

See Table 1 for notes.
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Conclusions

� In a benchmark speci�cation with quadratic adjustment costs, increasing
costs of external �nance, and linear homogeneous functional forms, we �nd
a monotonic relationship between this conditional investment-cash �ow
sensitivity and the cost premia for both new equity and debt �nance.

� The Holy Grail in this literature has been an estimable structural model
under the imperfect capital markets alternative. We derive a structural in-
vestment equation from the �rst order conditions of our benchmark model

� There are several good reasons why regressions of investment rates on
average q and cash �ow may not provide reliable evidence about capital
market imperfections.
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� Even with perfect capital markets:

� marginal q may not be a su¢ cient statistic for

� investment with non-quadratic adjustment costs (more on this below)

� average q may be a poor proxy for marginal q, due to market power

� average q may be poorly measured using stock market valuations, due
to share price bubbles

� However the non-monotonic relationship between unconditional investment-
cash �ow sensitivity and the cost premium for external �nance, highlighted
by Kaplan and Zingales (1997), has little relevance for evaluating this line
of research
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3.2 Uncertainty and Investment

3.2.1 Leahy and Whited (1996)

John Leahy and Toni Whited (1996): �The E¤ects of Uncertainty on Invest-
ment: Some stylized facts�. Journal of Money, Credit and Banking.

Brief overview

� Panel estimation of the e¤ect of uncertainty on investment

� Approach: Use yearly volatility of daily returns of stock as a measure of
uncertainty.
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� Estimate yearly �rm investment (from COMPUSTAT database) as a func-
tion of this

� Use �rm and year controls to try and deal with other omitted variables

� Use GMM to try to deal with endogeneity

� Key result: Uncertainty has a negative in�uence on investment.

� This mechanism appears to operate through Tobin�s q (high uncertainty
! low q).

� Note: No strong link between theory and empirics.
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Leahy and Whited (1996)

Basic specification (see paper for definitions):

Table 2: Effect of one‐period uncertainty forecasts on investment

The sample consists of 600 U.S. manufacturing firms observed 1982‐1987. 
The dependent variable is Investment / Capital Stock. Standard errors in ( ).
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3.2.2 Guiso and Parigi (1999)

Luigi Guiso and Giuseppe Parigi (1999). �Investment and Demand Uncer-
tainty�. Quarterly Journal of Economics.

Brief overview

� Estimates the e¤ect of uncertainty on investment

� Measure of uncertainty is based on a survey of Italian �rms� subjective
probability distribution of demand growth expectations.
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� Essentially �rms were asked to indicate the perceived probability that de-
mand would: a) grow by more than 50%; b) grow 25-50%; c) grow 15-25%;
and so on, until; shrink by more than 15%.

� The authors then use these survey data to generate a mean and variance
of expected demand.

� Basic speci�cation:

0I
p
1

K0
= �0 + �1

0yi
K0

(1� �20ui) + �3
I0
K�1

+ �4Zi + �1;

where 0I
p
1

K0
is investment planned by the �rm at the end of year 0 for year

1; I0 is the investment made in year 0; K denotes capital, 0yi is the level
of demand expected at the end of year 0 for year i, 0ui is the measure of
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subjective uncertainty, Zi is a vector of control variables and �1 is an error
term.

� Note that they estimate e¤ects of variance controlling for the mean.

� Note also they are primarily interested in the interaction term uncertainty
x expected demand. The idea is that, if investments are irreversible,
the e¤ect of an increase in uncertainty is to reduce the responsiveness of
investment to demand shocks. (Level of uncertainty is included in the Zi
vector, as a control).

� Main message: uncertainty reduces responsiveness.
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� Again: No strong link between theory and empirics.

[Table III here]
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Source: Guiso and Parigi, QJE, 1999. 
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4 Recent Developments in the Literature

Reference: Bloom, Nicholas (2009), "The Impact of Uncertainty Shocks,"
Econometrica 77, 623-685. (Bloom was awarded the Frisch Medal of the Econo-
metric Society for this paper.)

� The primary contribution of this paper is to analyze the e¤ects of uncer-
tainty shocks on various important micro and macro quantities using a
structural approach.

� Notice the emphasis on shocks: we are interested in the e¤ects of changes
in the second moment.
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� That there are such shocks to uncertainty seems hard to dispute - e.g. the
9/11 attacks. Uncertainty, of course, is hard to measure. However, using
data from �nancial markets we can learn quite a bit about the market�s
sentiment of risk.

� More speci�cally, we can back out implied volatility on a particular share
by using data on the price of the associated option combined with data
on its theoretical determinants (e.g. stock price, exercise price of option,
interest rate etc.).

� To illustrate, consider the Black-Scholes formula for the theoretical price
C of a European call option, giving the holder the right to buy one share
at price K after T years:

C = S� (d1 (�))�Ke�rT� (d2 (�)) ;
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where S is the current price of the stock, � (:) is the cumulative density
function for the standard normal distribution, r is the risk-free interest
rate, and

d1 =
ln (S=K) +

�
r + �2=2

�
T

�
p
T

;

and

d2 = d1 � �
p
T ;

where � is the standard deviation of returns. Clearly if you know all the
ingredients of this formula except �, you can back out � rather easily.

� The Chicago Board Options Exchange (CBOE) publishes an index known
as the Risk Sentiment Indicator, or the VXO index, which is based on the
trading of S&P 100 (OEX) options.
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� This index is interpretable as the annualized standard deviation in re-
turns. Data on the VXO index are available from 1986. Figure 1 in Bloom
shows a time series plot of the VXO index, combined with monthly stan-
dard deviation of the daily S&P500 index for the period before 1986. The
graph shows two important facts:

� There is a lot of variation over time in perceived variability of returns.
Volatility doubles at times of major shocks.

� Perceived variability of stock market returns tends to be high at times of
major economic and political shocks. If you look carefully in the notes,
you see that the index reached a 45-year high at the recent credit crunch
peak.

[Figure 1 here]
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� This paper adopts a structural approach. Writes down a theoretical invest-
ment model, and uses real data to estimate the model parameters. Then
analyzes e¤ects of uncertainty shocks.

� Highlights of the model predictions.

� An uncertainty shock yields a rapid slowdown (and bounceback) in
investment.

� Right after an uncertainty shock �rms are unresponsive to price changes.
Potentially important from a policy point of view - in such a situation
policy may be pretty ine¤ective

� More on policy: trade-o¤ between policy "correctness" and policy "de-
cisiveness" - it may be it may be better to act decisively (but occasion-
ally incorrectly) then to deliberate on policy, generating policy-induced
uncertainty.
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4.1 The model

� Bloom�s model is extension of the standard model of the �rm reviewed
above (Chirinko�s class of �explicit models�), in two ways:

� Uncertainty is modelled as a stochastic process, i.e. the variance
parameter is a¤ected by shocks and is therefore not constant

� There is a mix of convex and non-convex adjustment costs, a¤ecting
hiring and investment decisions. The non-convex adjustment costs are
crucial, generating real option e¤ects.

4.1.1 The revenue function

� Cobb-Douglas production function exhibiting constant returns to scale:

F = ~AK� (LH)1�� ;
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where ~A denotes productivity, K is capital, L is labour, and H is hours
worked.

� Iso-elastic demand for the �rm�s product:

Q = B � P��;

where B is a stochastic demand shifter and �� < �1 is the price elasticity
of demand (i.e. if �� is a large negative, then the price elasticity is high
& the demand curve fairly �at).

� Combining the production function and the demand equation assuming
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F = Q, we get the revenue function:

R = P � F
R = (F=B)�

1
� � F

R = B
1
� � F

��1
�

R = B
1
�

�
~AK� (LH)1��

���1
� :

For notation clarity, write this as

S = A1�a�bKa (LH)b ;

where

A1�a�b = B
1
� ~A

��1
� ;

a = �

�
�� 1
�

�
;

b = (1� �)
�
�� 1
�

�
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(you should con�rm this). Notice that the revenue function S is homo-
geneous of degree 1 in A;K; (LH), which, as we shall see later, is a
very useful property. From now on, refer to A as the �business conditions�
parameter.

� Wages are speci�ed as

w (H) = w1 (1 + w2H

) ;

where w1; w2; 
 are parameters to be estimated.

� Capital depreciates at a �xed rate �K , and there is an exogenous labour
quit rate of �L.
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4.1.2 The stochastic process for demand & productivity

� Business conditions A are modelled as an augmented geometric random
walk:

Ai;j;t = A
M
t �AFi;t �AUi;j;t;

whereAMt is a macro-level component; AFi;t is a �rm-level component;A
U
i;j;t

is a unit-level (e.g. plant) component; and i; j; t index �rm, unit (plant)
and time, respectively.

� The macro component.

AMt = AMt�1
�
1 + �t�1W

M
t

�
;

where �t�1 is the standard deviation of business conditions and WM
t is

a macro-level i.i.d. shock drawn from a standard normal distribution,.
WM
t ~N (0; 1).
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� The �rm-level component:

AFi;t = A
F
i;t�1

�
1 + �i;t + �t�1W

F
i;t

�
;

where �i;t is a �rm-level drift in business conditions, WF
i;t is a �rm-level

i.i.d. shock drawn from a standard normal distribution,. WF
i;t~N (0; 1).

� The unit-level component:

AUi;j;t = A
U
i;j;t�1

�
1 + �t�1W

U
i;j;t

�
;

where WU
i;;j;t is a �rm-level i.i.d. shock drawn from a standard normal

distribution,. WU
i;j;t~N (0; 1).

� The shocks WM
t ;WF

i;t;W
U
i;j;t are all assumed independent of each other.

Notice also that the uncertainty parameter is the same across the previous
three speci�cations - i.e. macro, �rm and unit uncertainty are the same!
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� The stochastic volatility (uncertainty) process
�
�2t

�
and the demand con-

ditions drift
�
�i;t

�
are assumed to follow two-point Markov chains:

�t 2 f�L; �Hg where Pr
�
�t+1 = �jj�t = �k

�
= ��k;j

�i;t 2 f�L; �Hg where Pr
�
�t+1 = �jj�t = �k

�
= �

�
k;j:

That is, these variables take one of two values, and the transition proba-
bilities are given by ��k;j and �

�
k;j.

4.1.3 Adjustment costs

Three terms:

1. Partial irreversibilities.
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� Cost of hiring and �ring workers:

CPL � 52w (40)
h
E+ + E�

i
;

where CPL is a fraction of annual wages and E+,E� denote absolute
hiring and �ring

� Cost of purchasing and selling o¤ capital (the latter due to transaction
costs, market for lemons etc.):h

I+ �
�
1� CPK

�
� I�

i
;

where CPK is the resale loss of capital denominated as a fraction of the
relative purchase price of capital, and I+,I� denote absolute values of
investment and disinvestment.

� CPL and CPK are parameters to be estimated. High values imply high
costs and high real option values - encouraging wait-and-see decisions.
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Over a range of values for the business condition parameter, the �rm
chooses to do nothing - zero hiring and �ring, zero investment. This
is known as the region of inaction.

2. Fixed disruption costs. When the level of employment or the level of
capital stock change, there may be a �xed loss of output. You may have
to shut down the factory for a few days when installing new capital, for
example. These �xed costs are denoted by CFL and CFL , for capital and
labour, respectively, both denominated as fractions of annual sales:

CFL 1[E 6=0] � S
CFK1[I 6=0] � S:

If �xed costs are high, it makes sense for the �rm to do a lot of adjustment
or none at all; i.e. adjustment tends to be "lumpy".
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3. Quadratic adjustment costs:

C
Q
L � L

�
E

L

�2
;

C
Q
K �K

�
I

K

�2
We saw above that this was the standard form of adjustment costs in the
literature during the 1980s and early 1990s. The idea is that large changes
to employment or capital are very costly. If quadratic adjustment costs are
high, it makes sense for the �rm to spread out a given adjustment over
several periods, generating smooth and continuous adjustment towards the
long-run target.
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Total adjustment costs are thus given by

C = CPL � 52w (40)
h
E+ + E�

i
+
h
I+ �

�
1� CPK

�
� I�

i
+CFL 1[E 6=0] � S + C

F
K1[I 6=0] � S

+C
Q
L � L

�
E

L

�2
+ C

Q
K �K

�
I

K

�2
:

4.1.4 Optimal investment and employment

The �rm�s optimization problem is to maximize the present discounted �ow of
revenues less the wage bill and the adjustment costs:

V (At;Kt; Lt; �t; �t) = max
It;Et;Ht

Et

8<:
1X
s=0

�
1

1 + r

�s
[St � Ct � wtLt]

9=; ;

91



where V denotes the value of the �rm, r is the one-period (constant) discount
rate, Et[:] denotes an expected value given information available at time t, and

St = S (At;Kt; Lt; Ht) (revenues)

Ct = C (At;Kt; Lt; Ht; It; Et) (adjustment costs)

wt = w (Ht) (wage rate).

Using recursive methods, we can expressed the �rm�s optimization problem as
a Bellman equation:

V (At;Kt; Lt; �t; �t) =

max
It;Et;Ht

(
St � Ct � wtLt+�

1
1+r

�
EtV

�
At+1;Kt+1; Lt+1; �t+1; �t+1

� )
This is equation simpli�ed in two important ways:
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1. Since hours (Ht) is a �exible factor it can be optimized out in a prior step,
using a conventional static �rst order condition equalizing the marginal cost
of hours to its marginal revenue. Optimal level of hours can be written as
a function of predetermined variables and parameters of the model, and
so we can replace hours by its determinants in the maximization problem.
This means we don�t have to solve numerically for hours.

2. Since the value function V is homogeneous of degree 1 in (At;Kt; Lt),
we can normalize the value function by capital and write:

Q (at; lt; �t; �t) = max
it;et

(
S� (at; lt)� C� (at; lt; it; ltet)+�

1��K+it
1+r

�
EtQ

�
at+1; lt+1; �t+1; �t+1

� ) ;
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where

Q = V=K

a = A=K

l = L=K

e = E=L

are normalized variables, and S� (at; lt) and C� (at; lt; it; ltet) are sales
and costs (both normalized by K) after optimization over hours. Note
that Q is interpretable as Tobin�s Q.

4.1.5 Aggregation

� Plant-level data typically indicate that hiring and investment are lumpy
with lots of zeros. In �rm-level data, however, investment and hiring are
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much smoother. Bloom has �rm-level data, and therefore aggregates unit
(plant) level data into �rm-level data, assuming that each �rm consists of
250 units.

4.1.6 How this model is used

Recap:

� The ultimate goal of the paper is to document the e¤ects of uncertainty
shocks on several quantities of interest, e.g. employment, investment and
productivity.
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� These e¤ects are inferred (simulated) from the model outlined in the
previous section

� The model, of course, contains a lot of unknown parameters, and the
e¤ect of uncertainty shocks will depend crucially on the values of those
parameters.

� For example, if irreversibilities are important (i.e. CPK is high), this will
result in �rms postponing their investments.

� So before we say anything about these e¤ects, we need to estimate the
unknown parameters of the model. Estimation of the model parameters is
a di¢ cult task in practice. But the overall principles are straightforward.
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1. First, conditional on a given vector of parameter values, we solve for op-
timal investment and hiring, using the model above. Unfortunately, this
is not straightforward and can�t be done analytically. Bloom uses numer-
ical dynamic programming. In the appendix, I provide an illustration of
one popular numerical dynamic programming technique known as value
iteration.

2. Second, based on these solutions we compare the predicted outcomes of
the model - investment, hiring, output etc - to real outcomes in data. The
aim is to mimic the real data as closely as possible, which is the basis for
estimation: we vary the structural parameters until the model predictions
are as close as they can be to real outcomes. At this point we have obtained
our estimates of the structural parameters.
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� Equipped with the estimates of the structural parameters, we can carry out
counterfactual simulations in order to analyze the e¤ects of uncertainty
shocks. We can ask, for example, what happens to investment (according
to the model) when uncertainty changes from a low level (�L) to a high
level (�H) : This type of analysis is done in Section 4, in Bloom�s paper.

4.1.7 Principles of estimation

� Basis for estimation: Can infer adjustment costs (and other parameters)
from observed moments in the real data. For example:

� If lots of zeros in investment data => quadratic costs not the whole
story
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� If high serial correlation in investment rates => �xed costs not the
whole story

� If lots of large investments in data => �xed costs likely

� If low correlation between investment and sales growth => high quadratic
costs likely

� Method of simulated moments (McFadden, 1989). Very �exible and
relatively easy to implement.

� The idea is quite intuitive: di¤erent parameter values give rise to di¤erent
observable patterns (moments) in the data.
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� Moments simulated from structural model. Vary parameter values, with
the objective of obtaining the best possible match between simulated &
real moments.

[Diagram for SMM here]

[Bloom moments and results here]
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Table 3: Adjustment cost estimates
Adjustment Costs Speci�cation: All Capital Labor Quad None
Estimated Parameters:
CP
K 33.9 42.7

investment resale loss (%) (6.8) (14.2)
CF
K 1.5 1.1

investment �xed cost (% annual sales) (1.5) (0.2)
CQ
K 0 0.996 4.844

capital quadratic adjustment cost (parameter) (0.009) (0.044) (454.15)
CP
L 1.8 16.7

per capita hiring/�ring cost (% annual wages) (0.8) (0.1)
CF
L 2.1 1.1

�xed hiring/�ring costs (% annual sales) (0.9) (0.1)
CQ
L 0 1.010 0

labor quadratic adjustment cost (parameter) (0.037) (0.017) (0.002)
�L 0.443 0.413 0.216 0.171 0.100
baseline level of uncertainty (0.009) (0.012) (0.005) (0.005) (0.005)
�H��L 0.121 0.122 0.258 0.082 0.158
spread of �rm business conditions growth (0.002) (0.002) (0.001) (0.001) (0.001)
��H;L 0 0 0.016 0 0.011
transition of �rm business conditions growth (0.001) (0.001) (0.001) (0.001) (0.001)

 2.093 2.221 3.421 2.000 2.013
curvature of the hours/wages function (0.272) (0.146) (0.052) (0.009) (14.71)
Moments: Data Data moments - Simulated moments
Correlation (I=K)i;t with (I=K)i;t�2 0.328 0.060 -0.015 0.049 -0.043 0.148
Correlation (I=K)i;t with (I=K)i;t�4 0.258 0.037 0.004 0.088 0.031 0.162
Correlation (I=K)i;t with (�L=L)i;t�2 0.208 0.003 -0.025 0.004 -0.056 0.078
Correlation (I=K)i;t with (�L=L)i;t�4 0.158 -0.015 -0.009 0.036 0.008 0.091
Correlation (I=K)i;t with (�S=S)i;t�2 0.260 -0.023 -0.062 -0.044 -0.102 0.024
Correlation (I=K)i;t with (�S=S)i;t�4 0.201 -0.010 -0.024 0.018 -0.036 0.087
Standard Deviation (I=K)i;t 0.139 -0.010 0.010 -0.012 0.038 0.006
Coe¢ cient of Skewness (I=K)i;t 1.789 0.004 0.092 1.195 1.311 1.916
Correlation (�L=L)i;t with (I=K)i;t�2 0.188 -0.007 0.052 -0.075 0.055 0.053
Correlation (�L=L)i;t with (I=K)i;t�4 0.133 -0.021 0.024 -0.061 0.038 0.062
Correlation (�L=L)i;t with (�L=L)i;t�2 0.160 0.011 0.083 -0.033 0.071 0.068
Correlation (�L=L)i;t with (�L=L)i;t�4 0.108 -0.013 0.054 -0.026 0.045 0.060
Correlation (�L=L)i;t with (�S=S)i;t�2 0.193 -0.019 0.063 -0.091 0.064 0.023
Correlation (�L=L)i;t with (�S=S)i;t�4 0.152 0.003 0.056 -0.051 0.059 0.063
Standard Deviation (�L=L)i;t 0.189 -0.022 -0.039 0.001 -0.001 0.005
Coe¢ cient of Skewness (�L=L)i;t 0.445 -0.136 0.294 -0.013 0.395 0.470
Correlation (�S=S)i;t with (I=K)i;t�2 0.203 -0.016 -0.015 -0.164 -0.063 -0.068
Correlation (�S=S)i;t with (I=K)i;t�4 0.142 -0.008 -0.010 -0.081 -0.030 -0.027
Correlation (�S=S)i;t with (�L=L)i;t�2 0.161 -0.005 0.032 -0.105 -0.024 -0.037
Correlation (�S=S)i;t with (�L=L)i;t�4 0.103 -0.015 0.011 -0.054 -0.005 -0.020
Correlation (�S=S)i;t with (�S=S)i;t�2 0.207 -0.033 0.002 -0.188 -0.040 -0.158
Correlation (�S=S)i;t with (�S=S)i;t�4 0.156 0.002 0.032 -0.071 -0.021 -0.027
Standard Deviation (�S=S)i;t 0.165 0.004 0.003 0.033 0.051 0.062
Coe¢ cient of Skewness (�S=S)i;t 0.342 -0.407 -0.075 -0.365 0.178 0.370
Criterion, �(�) 404 625 3618 2798 6922
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4.1.8 Summary of results and simulations

� Signi�cant region of inaction (�gure 5), due to non-convex adjustment
costs. Firms only hire and invest when business conditions are su¢ ciently
good. When uncertainty is higher, the region of inaction expands. This
suggests that large changes in �t can have an important impact on invest-
ment and hiring.

� The parameterized model is used to simulate a large macro uncertainty
shock, which produces a rapid drop and rebound in output, employment
and productivity growth (see e.g. Figure 8). This is due to the e¤ect of
higher uncertainty making �rms temporarily pause their hiring and invest-
ment behavior.

[Bloom�s Figure 5 & Figure 8 here]
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Figure 4: Hiring/firing and investment/disinvestment thresholds

InactionFire

Invest

Disinvest

Hire

Notes: Simulated thresholds using the adjustment cost estimates “All” in table 3. All other parameters and assumptions as outlined in sections 3 and 4. 
Although the optimal policies are of the (s,S) type it can not be proven that this is always the case.

Low uncertainty
(inner solid ‘box’)

High uncertainty
(outer dashed ‘box’)

Figure 5: Thresholds at low and high uncertainty

“Business Conditions”/Labour, log(A/L)
Notes: Simulated thresholds using the adjustment cost estimates “All” in Table 3. All other parameters and assumptions as outlined in sections 3 and 4. 
High uncertainty is twice the value of low uncertainty (σH=2×σL). 
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Source: Bloom, 2008. 
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5 Future research on investment

� I think it�s fair to say many economists feel the regression-based approach
(Euler, average Q) for analyzing investment is not satisfactory:

� Hard to defend exogeneity of the explanatory variables;

� To obtain a model suitable for linear regression analysis you need to
make a lot of unattractive assumptions (e.g. constant returns, perfect
competition etc.);

� Empirical performance is often disappointing (e.g. q-model implies
implausibly high adjustment costs; Euler equations generate results that
are inconsistent with the underlying theoretical model)

� This is an area for which randomized experiments are not very suitable
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� So I think Bloom�s general approach will become quite popular in the
literature. In fact we already see this right now.
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A simple Matlab Program:  

%{ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
This Matlab program illustrates value iteration by solving the following  
optimization problem: 
  
V(K(t)) = max PI(t) + theta*V(t+1) 
  
where PI(t) = A^(1-beta)*[K(t) + I(t)]^beta - I(t). 
  
We solve the problem by finding the best policy, K(t+1), given the 
current state, K(t). The capital evolution formula is  
  
K(t+1) = (1-dep)[K(t) + I(t)] 
  
For this particular problem there exists an analytical solution for investment: 
  
[K(t) + I(t)] = A(beta/ucc)^(1/(1-beta)) or  
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%} 
  
clear; 
clc; 
  
beta  = 0.50;            % capital elasticity in revenue function 
dep   = 0.10;            % depreciation rate 
r     = 0.05;            % discount rate 
ucc   = (r+dep)/(1+r); 
theta = 1/(1+r); 
A     = 10*(beta/ucc)^(-1/(1-beta));     % Set A such that K+I=10 optimal (a nice round number) 
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Khatstar=A*(beta/ucc)^(1/(1-beta))*(1-dep)          % optimal K(t+1) = (1-dep)*[K(t) + I(t)] 
  
% Next, do some housekeeping for value iteration 
Knum=7;                             % Number of points on the grid 
  
Kstart=log(Khatstar)-1;             % The lowest permissible value of capital 
Kfinish=log(Khatstar)+1;            % The highest permissible value of capital 
Kinc=(Kfinish-Kstart)/(Knum-1);     % Implied step size 
  
K0=exp(Kstart:Kinc:Kfinish);        % The entire vector of permissible values for capital 
  
% Set up matrices to be used during iterations 
  
V1=zeros(Knum,1);               % Initial guess is a zero vector (but you could use anything) 
auxV=zeros(Knum,Knum);          % auxilary matrix to store value outcomes for different policies 
  
% Set up the space of control variable: Capital evoluation formula Kt+1 = (1-dep)[It + Kt] implies: 
% It = Kt+1/(1-dep) - Kt 
  
  
I0=repmat((K0/(1-dep))',[1 Knum])-repmat(K0,[Knum 1]) ;     % Investment in t 
     %  policy: K(t+1)/(1-dep)  -  state: K(t) 
      
returns = repmat( A^(1-beta)*(K0/(1-dep))'.^beta,[1 Knum]) - I0 ;   % Cash flow in t 
  
%returns = returns - 0.5*1*(I0./repmat(K0,[Knum 1])-dep).^2.*repmat(K0,[Knum 1]) 
     
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%     SOLVE THE MODEL BY VALUE ITERATION           %  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
n=1; err=1; 
  
while err>0.0001; 
 
   auxV = returns + theta*repmat(V1,[1 Knum]);  
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   [Vmax Argmax] = max(auxV);          % Vmax stores the value at the optimum choice. Argmax indexes the optimal 
policy 
    
   V2=Vmax';  
  
   n=n+1; 
  
   err=(V1-V2)'*(V1-V2); 
    
   V1=V2; % Update the value function 
  
end; 
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Table 1: The first round of the value iteration 
 
  returns:  ←  K(t) (state variable)   → 
  3.3109  4.6208 6.4488 9 12.5605 17.5296  24.4645
 
↑ 
K(t+1) 
(control 
variable 
in t) 
↓ 

3.3109  1.3651  2.6749 4.5029 7.0542 10.6147 15.5838  22.5187
4.6208  0.224  1.5338 3.3618 5.9131 9.4736 14.4427  21.3776
6.4488  ‐1.4359  ‐0.126 1.702 4.2532 7.8137 12.7828  19.7177

9  ‐3.8319  ‐2.5221 ‐0.6941 1.8571 5.4177 10.3867  17.3217
12.5605  ‐7.2699  ‐5.9601 ‐4.132 ‐1.5808 1.9797 6.9488  13.8837
17.5296  ‐12.179  ‐10.8691 ‐9.0411 ‐6.4899 ‐2.9294 2.0397  8.9747
24.4645  ‐19.1613  ‐17.8514 ‐16.0234 ‐13.4722 ‐9.9117 ‐4.9426  1.9924

 
  + 
  theta*V': 
 
 
↑ 
K(t+1) 
(state  
variable 
in t+1) 

↓ 

3.3109  0  0 0 0 0 0  0
4.6208  0  0 0 0 0 0  0
6.4488  0  0 0 0 0 0  0

9  0  0 0 0 0 0  0
12.5605  0  0 0 0 0 0  0
17.5296  0  0 0 0 0 0  0
24.4645  0  0 0 0 0 0  0

 
  = 
  auxV:  ←  K(t) (state variable)   → 
  3.3109  4.6208 6.4488 9 12.5605 17.5296  24.4645
 
↑ 
K(t+1) 
(control 
variable 
in t) 
↓ 

3.3109  1.3651  2.6749 4.5029 7.0542 10.6147 15.5838  22.5187
4.6208  0.224  1.5338 3.3618 5.9131 9.4736 14.4427  21.3776
6.4488  ‐1.4359  ‐0.126 1.702 4.2532 7.8137 12.7828  19.7177

9  ‐3.8319  ‐2.5221 ‐0.6941 1.8571 5.4177 10.3867  17.3217
12.5605  ‐7.2699  ‐5.9601 ‐4.132 ‐1.5808 1.9797 6.9488  13.8837
17.5296  ‐12.179  ‐10.8691 ‐9.0411 ‐6.4899 ‐2.9294 2.0397  8.9747
24.4645  ‐19.1613  ‐17.8514 ‐16.0234 ‐13.4722 ‐9.9117 ‐4.9426  1.9924

 
Key lines in the program: 
 
   auxV = returns + theta*repmat(V1,[1 Knum]);  
   [Vmax Argmax] = max(auxV)  
 
Results from the max(.) command: 
 
Vmax = 
    1.3651    2.6749    4.5029    7.0542   10.6147   15.5838   22.5187 
 
Argmax = 
     1     1     1     1     1     1     1 
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Argmax tells me which element in the policy vector K0 is optimal. The firm has no value beyond the 
current time period, which is why it is optimal to sell off capital. 
 
The crucial output for the value iteration is Vmax, however.  Vmax gives me the value of the firm 
zero value beyond the current point in time, as a function of initial capital:  
 
>> [K0' V2 ] 
 
ans = 
 
    3.3109    1.3651 
    4.6208    2.6749 
    6.4488    4.5029 
    9.0000    7.0542 
   12.5605   10.6147 
   17.5296   15.5838 
   24.4645   22.5187 
 
Recall that my initial guess for the value function was a zero vector. Hence we have not yet 
converged: 
 
   err=(V1-V2)'*(V1-V2) 
  
 
err = 
 
  941.6717 
 
Now continue to iterate on the value function, using V2 as our updated ‘guess’ of the true value 
function:  
 
   V1=V2; % Update the value function 
 
 
See Table 2 for an analysis of policies, states and values using our updated guess. 
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Table 2: The second round of the value iteration 
 
  returns:  ←  K(t) (state variable)   → 
  3.3109  4.6208 6.4488 9 12.5605 17.5296  24.4645
 
↑ 
K(t+1) 
(control 
variable 
in t) 
↓ 

3.3109  1.3651  2.6749 4.5029 7.0542 10.6147 15.5838  22.5187
4.6208  0.224  1.5338 3.3618 5.9131 9.4736 14.4427  21.3776
6.4488  ‐1.4359  ‐0.126 1.702 4.2532 7.8137 12.7828  19.7177

9  ‐3.8319  ‐2.5221 ‐0.6941 1.8571 5.4177 10.3867  17.3217
12.5605  ‐7.2699  ‐5.9601 ‐4.132 ‐1.5808 1.9797 6.9488  13.8837
17.5296  ‐12.179  ‐10.8691 ‐9.0411 ‐6.4899 ‐2.9294 2.0397  8.9747
24.4645  ‐19.1613  ‐17.8514 ‐16.0234 ‐13.4722 ‐9.9117 ‐4.9426  1.9924

 
  + 
  theta*V': 
 
 
↑ 
K(t+1) 
(state  
variable 
in t+1) 
↓ 

3.3109  1.3001  1.3001 1.3001 1.3001 1.3001 1.3001  1.3001
4.6208  2.5475  2.5475 2.5475 2.5475 2.5475 2.5475  2.5475
6.4488  4.2885  4.2885 4.2885 4.2885 4.2885 4.2885  4.2885

9  6.7182  6.7182 6.7182 6.7182 6.7182 6.7182  6.7182
12.5605  10.1092  10.1092 10.1092 10.1092 10.1092 10.1092  10.1092
17.5296  14.8417  14.8417 14.8417 14.8417 14.8417 14.8417  14.8417
24.4645  21.4464  21.4464 21.4464 21.4464 21.4464 21.4464  21.4464

 
  = 
  auxV:  ←  K(t) (state variable)   → 
  3.3109  4.6208 6.4488 9 12.5605 17.5296  24.4645
 
↑ 
K(t+1) 
(control 
variable 
in t) 
↓ 

3.3109  2.6651  3.975 5.803 8.3542 11.9147 16.8838  23.8187
4.6208  2.7715  4.0813 5.9094 8.4606 12.0211 16.9902  23.9251
6.4488  2.8526  4.1625 5.9905 8.5417 12.1022 17.0713  24.0062

9  2.8863  4.1961 6.0242 8.5754 12.1359 17.105  24.0399
12.5605  2.8393  4.1491 5.9772 8.5284 12.0889 17.058  23.9929
17.5296  2.6627  3.9726 5.8006 8.3518 11.9123 16.8814  23.8163
24.4645  2.2851  3.5949 5.423 7.9742 11.5347 16.5038  23.4387

 
We update the value function again: 
 
Vmax = 
 
    2.8863    4.1961    6.0242    8.5754   12.1359   17.1050   24.0399 
 
V2 = 
 
    2.8863 
    4.1961 
    6.0242 
    8.5754 
   12.1359 
   17.1050 
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   24.0399 
 
Check if there is convergence: 
 
err = 
 
   16.1990 
 
and since the value function has changed a lot, we continue to iterate on it. That is, we plug in the 
updated value function on the right‐hand side of the Bellman equation and find the maximum using 
the same principles as earlier. We only stop when the difference between the value function in step 
j‐1 and that in step j is small enough. The full value iteration in this case requires more than 100 
iterations. We can print out n and err as follows: 
 
 
ans = 
 
    2.0000  941.6717 
 
 
ans = 
 
    3.0000   16.1990 
 
(…) 
 
  125.0000    0.0001 
 
 
ans = 
 
  126.0000    0.0001 
 
 
Thus, after 126 iterations, there is convergence. The value function is as follows: 
 
>> [K0' V2 ] 
 
ans = 
 
    3.3109   33.2356 
    4.6208   34.5454 
    6.4488   36.3735 
    9.0000   38.9247 
   12.5605   42.4852 
   17.5296   47.4543 
   24.4645   54.3892 
 
At this point we take an interest in the optimal policy. Recall that this is provided as part of Matlab’s 
max(.) command – in our case, all the information we need is in the vector Argmax: 
 
Argmax = 
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     4     4     4     4     4     4     4 
 
We can then find optimal policy, i.e. K(t+1), as follows: 
 
>> K0(Argmax) 
 
ans = 
 
    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000 
 
which confirms our analytical solution above.  
 
We can easily translate this policy into optimal investment in period t, using the capital evolution 
formula: 
 
I0=(K0(Argmax)/(1‐dep))'‐K0'; 
 
>> [K0' I0] 
 
ans = 
 
    3.3109    6.6891 
    4.6208    5.3792 
    6.4488    3.5512 
    9.0000    1.0000 
   12.5605   ‐2.5605 
   17.5296   ‐7.5296 
   24.4645  ‐14.4645 
 
The first column here is interpretable as capital in the beginning of period t; hence if you’ve got too 
much capital you will sell off capital and if you’ve got too little you will invest. 
 
Generalizations: 
 
‐ More points on the “grid” 
‐ Adjustment costs  
‐ Uncertainty 
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Figure 1. Investment under quadratic adjustment costs 
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The green line shows optimal investment under no adjustment costs. The blue line shows investment 
under quadratic adjustment costs, C = 0.5*0.25*[I(t)/K(t) – dep/(1‐dep)]^2 * K(t). 
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