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1 Introduction

The methods discussed thus far in the course are well suited for modelling a
continuous, quantitative variable - e.g. economic growth, the log of value-
added or output, the log of earnings etc. Many economic phenomena of in-
terest, however, concern variables that are not continuous or perhaps not even
quantitative.

� What characteristics (e.g. parental) a¤ect the likelihood that an individual
obtains a higher degree?

� What are the determinants of the decision to export?



� What determines labour force participation (employed vs not employed)?

� What factors drive the incidence of civil war?

In this lecture we discuss how to model binary outcomes, using panel data. We
will look at some empirical applications, including a dynamic model of exporting
at the �rm-level. The core reference is Chapter 15 in Wooldridge. We will also
discuss brie�y how tobit and selection models can be estimated with panel data.



2 Recap: Binary choice models without individ-

ual e¤ects

Whenever the variable that we want to model is binary, it is natural to think
in terms of probabilities, e.g.

� �What is the probability that an individual with such and such characteris-
tics owns a car?�

� �If some variable X changes by one unit, what is the e¤ect on the probability
of owning a car?�



� When the dependent variable yit is binary, it is typically equal to one for
all observations in the data for which the event of interest has happened
(�success�) and zero for the remaining observations (�failure�).

� We now review methods that can be used to analyze what factors �deter-
mine�changes in the probability that yit equals one.

2.1 The Linear Probability Model

Consider the linear regression model

yit = �1 + �2x2it + :::+ �KxKit + ci + uit

yit = xit� + ci + uit;



where y is a binary response variable, xit is a 1�K vector of observed explana-
tory variables (including a constant), � is a K � 1 vector of parameters, ci is
an unobserved time invariant individual e¤ect, and uit is a zero-mean residual
uncorrelated with all the terms on the right-hand side.

� Assume strict exogeneity holds - the residual uit is uncorrelated with all
x-variables over the entire time period spanned by the panel (see earlier
lectures on this course).

� Since the dependent variable is binary, it is natural to interpret the ex-
pected value of y as a probability. Indeed, under random sampling, the
unconditional probability that y equals one is equal to the unconditional
expected value of y, i.e. E (y) = Pr (y = 1).



� The conditional probability that y equals one is equal to the conditional
expected value of y:

Pr (yit = 1jxit; ci) = E (yitjxit; ci;�) :
So if the model above is correctly speci�ed, we have

Pr (yit = 1jxit; ci) = xit� + ci;

Pr (yit = 0jxit; ci) = 1� (xit� + ci) : (1)

� Equation (1) is a binary response model. In this particular model the
probability of success (i.e. y = 1) is a linear function of the explanatory
variables in the vector x. Hence this is called a linear probability model
(LPM).

� We can therefore use a linear regression model to estimate the parameters,
such as OLS or the within estimator. Which particular linear estimator we



should use depends on the relationship between the observed explanatory
variables and the unobserved individual e¤ects - see the earlier lectures in
the course for details.

[EXAMPLE 1: Modelling the decision to export in Ghana�s manufacturing
sector. To be discussed in class.]



2.1.1 Weaknesses of the Linear Probability Model

� One undesirable property of the LPM is that we can get predicted "prob-
abilities" either less than zero or greater than one. Of course a probability
by de�nition falls within the (0,1) interval, so predictions outside this range
are meaningless and somewhat embarrassing.

� A related problem is that, conceptually, it does not make sense to say that
a probability is linearly related to a continuous independent variable for
all possible values. If it were, then continually increasing this explanatory
variable would eventually drive P (y = 1jx) above one or below zero.

� A third problem with the LPM, is that the residual is heteroskedastic. The
easiest way of solving this problem is to obtain estimates of the standard
errors that are robust to heteroskedasticity.



� A fourth and related problem is that the residual is not normally distributed.
This implies that inference in small samples cannot be based on the usual
suite of normality-based distributions such as the t test.



2.1.2 Strengths of the Linear Probability Model

� Easy to estimate, easy to interpret results. Marginal e¤ects, for example,
are straightforward:

�Pr (yit = 1jxit; ci)
�xj;it

= �j

� Certain econometric problems are easier to address within the LPM frame-
work than with probits and logits - for instance using instrumental variables
whilst controlling for �xed e¤ects.

[EXAMPLE 2: Miguel, Satyanath and Sergenti, JPE, 2004: Modelling the
likelihood of civil war in Sub-Saharan Africa allowing for �xed e¤ects and using
instruments. To be discussed in class.]



2.2 Logit and Probit Models for Binary Response

� The two main problems with the LPM were: nonsense predictions are
possible (there is nothing to bind the value of Y to the (0,1) range); and
linearity doesn�t make much sense conceptually. To address these problems
we can use a nonlinear binary response model.

� For the moment we assume there are no unobserved individual e¤ects. Un-
der this assumption, we can use standard cross-section models to estimate
the parameters of interest, even if we have panel data. Of course, the
assumption that there are no unobserved individual e¤ects is very restric-
tive, and in subsequent sections we discuss various ways of relaxing this
assumption.



� We write our nonlinear binary response model as

Pr (y = 1jx) = G (�1 + �2x2 + :::+ �KxK)

Pr (y = 1jx) = G (x�) ; (2)

where G is a function taking on values strictly between zero and one:
0 < G (z) < 1, for all real numbers z (individual and time subscripts have
been omitted here).

� This is an index model, because Pr (y = 1jx) is a function of the vector
x only through the index

x� = �1 + �2x2 + :::+ �kxk;

which is a scalar. Notice that 0 < G (x�) < 1 ensures that the esti-
mated response probabilities are strictly between zero and one, which thus
addresses the main worries of using LPM.



� G is a cumulative density function (cdf), monotonically increasing in
the index z (i.e. x�), with

Pr (y = 1jx) ! 1 as x� !1
Pr (y = 1jx) ! 0 as x� ! �1:

It follows that G is a non-linear function, and hence we cannot use a linear
regression model for estimation.

� Various non-linear functions for G have been suggested in the literature.
By far the most common ones are the logistic distribution, yielding the logit
model, and the standard normal distribution, yielding the probit model.

� In the logit model,

G (x�) =
exp (x�)

1 + exp (x�)
= � (x�) ;



which is between zero and one for all values of x� (recall that x� is a
scalar). This is the cumulative distribution function (CDF) for a logistic
variable.

� In the probit model, G is the standard normal CDF, expressed as an inte-
gral:

G (x�) = � (x�) �
Z x�
�1

� (v) dv;

where

� (v) =
1p
2�
exp

 
�v

2

2

!
;

is the standard normal density. This choice of G also ensures that the
probability of �success�is strictly between zero and one for all values of the
parameters and the explanatory variables.



The logit and probit functions are both increasing in x�. Both functions
increase relatively quickly at x� = 0, while the e¤ect on G at extreme values
of x� tends to zero. The latter result ensures that the partial e¤ects of
changes in explanatory variables are not constant, a concern we had with the
LPM.



A latent variable framework

� As we have seen, the probit and logit models resolve some of the problems
with the LPM model. The key, really, is the speci�cation

Pr (y = 1jx) = G (x�) ;

whereG is the cdf for either the standard normal or the logistic distribution,
because with any of these models we have a functional form that is easier
to defend than the linear model. This, essentially, is how Wooldridge
motivates the use of these models.

� The traditional way of introducing probits and logits in econometrics, how-
ever, is not as a response to a functional form problem. Instead, probits and
logits are traditionally viewed as models suitable for estimating parameters
of interest when the dependent variable is not fully observed.



� Let y� be a continuous variable that we do not observe - a latent variable
- and assume y� is determined by the model

y� = �1 + �2x2 + :::+ �KxK + e

= x� + e; (3)

where e is a residual, assumed uncorrelated with x (i.e. x is not endoge-
nous). While we do not observe y�, we do observe the discrete choice
made by the individual, according to the following choice rule:

y = 1 if y� > 0

y = 0 if y� � 0:

Why is y� unobserved? Think about y� as representing net utility of,
say, buying a car. The individual undertakes a cost-bene�t analysis and
decides to purchase the car if the net utility is positive. We do not observe
(because we cannot measure) the �amount�of net utility; all we observe is



the actual outcome of whether or not the individual does buy a car. (If we
had data on y� we could estimate the model (3) with OLS as usual.)

� Now, we want to model the probability that a �positive� choice is made
(e.g. buying, as distinct from not buying, a car). By de�nition,

Pr (y = 1jx) = Pr (y� > 0jx) ;
hence

Pr (y = 1jx) = Pr (e > �x�) ;
which results in the logit model if e follows a logistic distribution, and the
probit model if e is follows a (standard) normal distribution:

Pr (y = 1jx) = � (x�) (logit)
Pr (y = 1jx) = � (x�) (probit)

(integrate and exploit symmetry of the distribution to arrive at these ex-
pressions).



2.2.1 The likelihood function

� Probit and logit models are estimated by means of Maximum Likeli-
hood (ML). That is, the ML estimate of � is the particular vector �̂

ML

that gives the greatest likelihood of observing the outcomes in the sample
fy1; y2; :::g, conditional on the explanatory variables x.

� By assumption, the probability of observing yi = 1 is G (x�) while the
probability of observing yi = 0 is 1�G (x�) : It follows that the probability
of observing the entire sample is

L (yjx;�) =
Y
i2l
G (xi�)

Y
i2m

[1�G (xi�)] ;

where l refers to the observations for which y = 1 and m to the observa-
tions for which y = 0.



� We can rewrite this as

L (yjx;�) =
NY
i=1

G (xi�)
yi [1�G (xi�)]

(1�yi) ;

because when y = 1 we getG (xi�) and when y = 0 we get [1�G (xi�)].

� The log likelihood for the sample is

lnL (yjx;�) =
NX
i=1

fyi lnG (xi�) + (1� yi) ln [1�G (xi�)]g :

The MLE of � maximizes this log likelihood function.



� If G is the logistic CDF then we obtain the logit log likelihood:

lnL (yjx;�) =
NX
i=1

fyi ln � (xi�) + (1� yi) ln [1� � (xi�)]g

lnL (yjx;�) =
NX
i=1

(
yi ln

 
exp (xi�)

1 + exp (xi�)

!
+ (1� yi) ln

 
1

1 + exp (xi�)

!)
;

� If G is the standard normal CDF we get the probit log likelihood:

lnL (yjx;�) =
NX
i=1

fyi ln � (xi�) + (1� yi) ln [1� �(xi�)]g :

� The maximum of the sample log likelihood is found by means of certain
algorithms (e.g. Newton-Raphson) but we don�t have to worry about that
here.



2.2.2 Interpretation: Partial e¤ects

In most cases the main goal is to determine the e¤ects on the response proba-
bility Pr (y = 1jx) resulting from a change in one of the explanatory variables,
say xj.

Case I: The explanatory variable is continuous.

� When xj is a continuous variable, its partial e¤ect on Pr (y = 1jx) is
obtained from the partial derivative:

@ Pr (y = 1jx)
@xj

=
@G (x�)

@xj
= g (x�) � �j;



where

g (z) � dG (z)

dz

is the probability density function associated with G.

� Because the density function is non-negative, the partial e¤ect of xj will
always have the same sign as �j.

� Notice that the partial e¤ect depends on g (x�); i.e. for di¤erent values
of x1; x2; :::; xk the partial e¤ect will be di¤erent.

� Example: Suppose we estimate a probit modelling the probability that a
manufacturing �rm in Ghana does some exporting as a function of �rm



size. For simplicity, abstract from other explanatory variables. Our model
is thus:

Pr (exports = 1jsize) = � (�0 + �1size) ;

where size is de�ned as the natural logarithm of employment. The probit
results are

coef. t-value
�0 -2.85 16.6
�1 0.54 13.4

Since the coe¢ cient on size is positive, we know that the marginal e¤ect
must be positive. Treating size as a continuous variable, it follows that
the marginal e¤ect is equal to

@ Pr (exports = 1jsize)
@size

= � (�0 + �1 � size)�1
= � (�2:85 + 0:54 � size) 0:54;



where � (:) is the standard normal density function:

� (z) =
1p
2�
exp

�
�z2=2

�
:

We see straight away that the marginal e¤ect depends on the size of the
�rm. In this particular sample the mean value of log employment is 3.4
(which corresponds to 30 employees), so let�s evaluate the marginal e¤ect
at size = 3:4:

@ Pr (exports = 1jsize = 3:4)
@size

=
1p
2�
exp

�
� (�2:85 + 0:54 � 3:4)2 =2

�
0:54

= 0:13;

Hence, evaluated at log employment = 3.4, the results imply that an
increase in log size by a small amount � raises the probability of exporting
by 0.13�.



The Stata command �mfx compute� can be used to obtain marginal e¤ects,
with standard errors, after logit and probit models.



Case II: The explanatory variable is discrete. If xj is a discrete variable
then we should not rely on calculus in evaluating the e¤ect on the response
probability. To keep things simple, suppose x2 is binary. In this case the partial
e¤ect from changing x2 from zero to one, holding all other variables �xed, is

G (�1 + �2 � 1 + :::+ �KxK)�G (�1 + �2 � 0 + :::+ �KxK) :

Again this depends on all the values of the other explanatory variables and the
values of all the other coe¢ cients.

Again, knowing the sign of �2 is su¢ cient for determining whether the e¤ect
is positive or not, but to �nd the magnitude of the e¤ect we have to use the
formula above.

The Stata command �mfx compute�can spot dummy explanatory variables. In
such a case it will use the above formula for estimating the partial e¤ect.



3 Binary choice models for panel data

We now turn to the issue of how to estimate probit and logit models allowing
for unobserved individual e¤ects. Using a latent variable framework, we write
the panel binary choice model as

y�it = xit� + ci + uit;

yit = 1 [y�it > 0] ; (4)

and

Pr (yit = 1jxit; ci) = G (xit� + ci) ;

where G (:) is either the standard normal CDF (probit) or the logistic CDF
(logit).



� Recall that, in linear models, it is easy to eliminate ci by means of �rst
di¤erencing or using within transformation.

� Those routes are not open to us here, unfortunately, since the model is
nonlinear (e.g. di¤erencing equation (4) does not remove ci).

� Moreover, if we attempt to estimate ci directly by adding N�1 individual
dummy variables to the probit or logit speci�cation, this will result in
severely biased estimates of � unless T is large. This is known as the
incidental parameters problem: with T small, the estimates of the ci
are inconsistent (i.e. increasing N does not remove the bias), and, unlike
the linear model, the inconsistency in ci has a �knock-on e¤ect�in the sense
that the estimate of � becomes inconsistent too.



3.1 Incidental parameters: A classical example

Consider the logit model in which T = 2, � is a scalar, and xit is a time
dummy such that xi1 = 0; xi2 = 1. Thus

Pr (yit = 1jxi1; ci) =
exp (� � 0 + ci)

1 + exp (� � 0 + ci)
� � (� � 0 + ci) ;

Pr (yit = 1jxi2; ci) =
exp (� � 1 + ci)

1 + exp (� � 1 + ci)
� � (� � 1 + ci) :

Suppose we attempt to estimate this model with N dummy variables included
to control for the individual e¤ects. There would thus be N +1 parameters in
the model: c1; c2; :::; ci; :::cN ; �: Our parameter of interest is �.

However, it can be shown that, in this particular case,

p lim
N!1

�̂ = 2�:



That is, the probability limit of the logit dummy variable estimator - for this
admittedly very special case - is double the true value of �. With a bias of
100% in very large (in�nite) samples, this is not a very useful approach. This
form of inconsistency also holds in more general cases: unless T is large, the
logit dummy variable estimator will not work.

� So how can we proceed? I will discuss three common approaches: the
traditional random e¤ects (RE) probit (or logit) model; the conditional
�xed e¤ects logit model; and the Mundlak-Chamberlain approach.



3.2 The traditional random e¤ects (RE) probit

Model:

y�it = xit� + ci + uit;

yit = 1 [y�it > 0] ;

and

Pr (yit = 1jxit; ci) = G (xit� + ci) ;

The key assumptions underlying this estimator are:

� ci and xit are independent



� the xit are strictly exogenous (this will be necessary for it to be possible to
write the likelihood of observing a given series of outcomes as the product
of individual likelihoods).

� ci has a normal distribution with zero mean and variance �2c (note: ho-
moskedasticity).

� yi1; :::; yiT are independent conditional on (xi; ci) - this rules out serial
correlation in yit, conditional on (xi; ci). This assumption enables us to
write the likelihood of observing a given series of outcomes as the product
of individual likelihoods. The assumption can easily be relaxed - see eq.
(15.68) in Wooldridge (2002).



� Clearly these are restrictive assumptions, especially since endogeneity in the
explanatory variables is ruled out. The only advantage (which may strike
you as rather marginal) over a simple pooled probit model is that the RE
model allows for serial correlation in the unobserved factors determining
yit, i.e. in (ci + uit).

� However, it is fairly straightforward to extend the model and allow for corre-
lation between ci and xit - this is precisely what the Mundlak-Chamberlain
approach achieves, as we shall see below.

� Clearly, if ci had been observed, the likelihood of observing individual i
would have been

TY
t=1

[� (xit� + ci)]
yit [1� � (xit� + ci)]

(1�yit) ;



and it would have been straightforward to maximize the sample likelihood
conditional on xit; ci; yit.

� Because the ci are unobserved, however, they cannot be included in the
likelihood function. As discussed above, a dummy variables approach can-
not be used, unless T is large. What can we do?

� Recall from basic statistics (Bayes�theorem for probability densities) that,
in general,

fxjy (x; y) =
fxy (x; y)

fy (y)
;

where fxjy (x; y) is the conditional density ofX given Y = y; fxy (x; y) is
the joint distribution of random variables X;Y ; and fy (y) is the marginal



density of Y . Thus,

fxy (x; y) = fxjy (x; y) fy (y) :

� Moreover, the marginal density of X can be obtained by integrating out y
from the joint density

fx (x) =
Z
fxy (x; y) dy =

Z
fxjy (x; y) fy (y) dy:

� Clearly we can think about fx (x) as a likelihood contribution. For a linear
model, for example, we might write

f" (") =
Z
f"c ("; c) dc =

Z
f"jc ("; c) fc (c) dc;

where "it = yit � (xit� + ci).



� In the context of the traditional RE probit, we integrate out ci from the
likelihood as follows:

Li
�
yi1; :::; yiT jxi1; :::;xiT ;�;�2c

�
=

Z TY
t=1

[� (xit� + c)]yit [1� � (xit� + c)](1�yit) (1=�c)� (c=�c) dc:

� In general, there is no analytical solution here, and so numerical methods
have to be used. The most common approach is to use a Gauss-Hermite
quadrature method, which amounts to approximatingZ TY

t=1

[� (xit� + c)]yit [1� � (xit� + c)](1�yit) (1=�c)� (c=�c) dc



as

��1=2
MX
m=1

wm
TY
t=1

h
�
�
xit� +

p
2�cgm

�iyit h
1� �

�
xit� +

p
2�cgm

�i(1�yit)
;

(5)
where M is the number of nodes, wm is a prespeci�ed weight, and gm
a prespeci�ed node (prespeci�ed in such a way as to provide as good an
approximation as possible of the normal distribution).

� For example, if M = 3, we have

wm gm
0.2954 -1.2247
1.1826 0.0000
0.2954 1.2247



in which case (5) can be written out as

0:1667
TY
t=1

[� (xit� � 1:731�c)]yit [1� � (xit� � 1:731�c)](1�yit)

+0:6667
TY
t=1

[� (xit�)]
yit [1� � (xit�)](1�yit)

+0:1667
TY
t=1

[� (xit� + 1:731�c)]
yit [1� �(xit� + 1:731�c)](1�yit) :

In practice a larger number of nodes than 3 would of course be used (the
default in Stata is M = 12). Lists of weights and nodes for given values
of M can be found in the literature.

� To form the sample log likelihood, we simply compute weighted sums in
this fashion for each individual in the sample, and then add up all the



individual likelihoods expressed in natural logarithms:

logL =
NX
i=1

logLi
�
yi1; :::; yiT jxi1; :::;xiT ;�;�2c

�
:

Marginal e¤ects at ci = 0 can be computed using standard techniques.
This model can be estimated in Stata using the xtprobit command.

[EXAMPLE 3: Modelling exports in Ghana using probit and allowing for unob-
served individual e¤ects. Discuss in class].

Whilst perhaps elegant, the above model does not allow for a correlation be-
tween ci and the explanatory variables, and so does not achieve anything in
terms of addressing an endogeneity problem. We now turn to more useful
models in that context.



3.3 The "�xed e¤ects" logit model

Now return to the panel logit model:

Pr (yit = 1jxit; ci) = � (xit� + ci) :

� One important advantage of this model over the probit model is that
will be possible to obtain a consistent estimator of � without making
any assumptions about how ci is related to xit (however, you need strict
exogeneity to hold; cf. within estimator for linear models).

� This is possible, because the logit functional form enables us to eliminate
ci from the estimating equation, once we condition on what is sometimes
referred to as a "minimum su¢ cient statistic" for ci.



To see this, assume T = 2, and consider the following conditional probabilities:

Pr (yi1 = 0; yi2 = 1jxi1; xi2; ci; yi1 + yi2 = 1) ;

and

Pr (yi1 = 0; yi2 = 1jxi1; xi2; ci; yi1 + yi2 = 1) :

The key thing to note here is that we condition on yi1+ yi2 = 1, i.e. that yit
changes between the two time periods. For the logit functional form, we have

Pr (yi1 + yi2 = 1jxi1; xi2; ci) =
exp (xi1� + ci)

1 + exp (xi1� + ci)

1

1 + exp (xi2� + ci)

+
1

1 + exp (xi1� + ci)

exp (xi2� + ci)

1 + exp (xi2� + ci)
;

or simply

Pr (yi1 + yi2 = 1jxi1; xi2; ci) =
exp (xi1� + ci) + exp (xi2� + ci)

[1 + exp (xi1� + ci)] [1 + exp (xi2� + ci)]
:



Furthermore,

Pr (yi1 = 0; yi2 = 1jxi1; xi2; ci) =
1

1 + exp (xi1� + ci)

exp (xi2� + ci)

1 + exp (xi2� + ci)
;

hence, conditional on yi1 + yi2 = 1,

Pr (yi1 = 0; yi2 = 1jxi1; xi2; ci; yi1 + yi2 = 1)

=
exp (xi2� + ci)

exp (xi1� + ci) + exp (xi2� + ci)

Pr (yi1 = 0; yi2 = 1jxi1; xi2; yi1 + yi2 = 1) =
exp (�xi2�)

1 + exp (�xi2�)

� The key result here is that the ci are eliminated. It follows that

Pr (yi1 = 1; yi2 = 0jxi1; xi2; yi1 + yi2 = 1) =
1

1 + exp (�xi2�)
:



� Remember:

1. These probabilities condition on yi1 + yi2 = 1

2. These probabilities are independent of ci.

Hence, by maximizing the following conditional log likelihood function

logL =
NX
i=1

(
d01i ln

 
exp (�xi2�)

1 + exp (�xi2�)

!
+ d10i ln

 
1

1 + exp (�xi2�)

!)
;

we obtain consistent estimates of �, regardless of whether ci and xit are cor-
related.



� The trick is thus to condition the likelihood on the outcome series (yi1; yi2) ;
and in the more general case (yi1; yi2; :::; yiT ). For example, if T = 3, we
can condition on

P
t yit = 1, with possible sequences f1; 0; 0g ; f0; 1; 0g

and f0; 0; 1g, or onPt yit = 2, with possible sequences f1; 1; 0g ; f1; 0; 1g
and f0; 1; 1g. Stata does this for us, of course. This estimator is requested
in Stata by using xtlogit with the fe option.

[EXAMPLE 4: Modelling exports in Ghana using a "�xed e¤ects" logit. To be
discussed in class].

Note that the logit functional form is crucial for it to be possible to eliminate
the ci in this fashion. It won�t be possible with probit. So this approach is
not really very general. Another awkward issue concerns the interpretation of
the results. The estimation procedure just outlined implies we do not obtain
estimates of ci, which means we can�t compute marginal e¤ects.



3.4 Modelling the random e¤ect as a function of x-variables

The previous two methods are useful, but arguably they don�t quite help you
achieve enough:

� the traditional random e¤ects probit/logit model requires strict exogeneity
and zero correlation between the explanatory variables and ci;

� the �xed e¤ects logit relaxes the latter assumption but we can�t obtain
consistent estimates of ci and hence we can�t compute the conventional
marginal e¤ects in general.



We will now discuss an approach which, in some ways, can be thought of as
representing a middle way. Start from the latent variable model

y�it = xit� + ci + eit;

yit = 1[y�it>0]
:

Consider writing the ci as an explicit function of the x-variables, for example
as follows:

ci =  + �xi� + ai; (6)

or

ci = �+ xi� + bi (7)

where �xi is an average of xit over time for individual i (hence time invariant);
xi contains xit for all t; ai is assumed uncorrelated with �xi; bi is assumed
uncorrelated with xi. Equation (6) is easier to implement and so we will focus
on this (see Wooldridge, 2002, pp. 489-90 for a discussion of the more general
speci�cation).



� Assume that var (ai) = �2a is constant (i.e. there is homoskedasticity)
and that ei is normally distributed - the model that then results is known
as Chamberlain�s random e¤ects probit model. You might say (6) is
restrictive, in the sense that functional form assumptions are made, but at
least it allows for non-zero correlation between ci and the regressors xit.

� The probability that yit = 1 can now be written as

Pr (yit = 1jxit; ci) = Pr (yit = 1jxit; �xi; ai) = � (xit� +  + �xi� + ai) :

You now see that, after having added �xi to the RHS, we arrive at the
traditional random e¤ects probit model:

Li
�
yi1; :::; yiT jxi1; :::;xiT ;�;�2a

�
=
Z TY
t=1

[� (xit� +  + �xi� + a)]yit

� [1� �(xit� +  + �xi� + a)](1�yit) (1=�a)� (a=�a) da:



� E¤ectively, we are adding �xi as control variables to allow for some corre-
lation between the random e¤ect ci and the regressors.

� If xit contains time invariant variables, then clearly they will be collinear
with their mean values for individual i, thus preventing separate identi�-
cation of �-coe¢ cients on time invariant variables.

� We can easily compute marginal e¤ects at the mean of ci, since

E (ci) =  + E (�xi) �

� Notice also that this model nests the simpler and more restrictive tradi-
tional random e¤ects probit: under the (easily testable) null hypothesis
that � = 0, the model reduces to the traditional model discussed earlier.



[EXAMPLE 5: To be discussed in class].



3.5 Relaxing the normality assumption for the unobserved

e¤ect

The assumption that ci (or ai) is normally distributed is potentially strong.
One alternative is to follow Heckman and Singer (1984) and adopt a non-
parametric strategy for characterizing the distribution of the random e¤ects.
The premise of this approach is that the distribution of c can be approximated
by a discrete multinomial distribution with Q points of support:

Pr (c = Cq) = Pq;

0 � Pq � 1,
P
q Pq = 1, q = 1; 2; :::; Q, where the Cq, and the Pq are

parameters to be estimated.

Hence, the estimated "support points" (the Cq) determine possible realizations
for the random intercept, and the Pq measure the associated probabilities. The



likelihood contribution of individual i is now

Li
�
yi1; :::; yiT jxi1; :::;xiT ;�;�2c

�
=

QX
q
Pq

TY
t=1

[� (xit� + Cq)]
yit [1� � (xit� + Cq)]

(1�yit) :

Compared to the model based on the normal distribution for ci, this model is
clearly quite �exible.

In estimating the model, one important issue refers to the number of support
points, Q. In fact, there are no well-established theoretically based criteria for
determining the number of support points in models like this one. Standard
practice is to increase Q until there are only marginal improvements in the
log likelihood value. Usually, the number of support points is small - certainly
below 10 and typically below 5.



Notice that there are many parameters in this model. With 4 points of support,
for example, you estimate 3 probabilities (the 4th is a �residual� probability
resulting from the constraint that probabilities sum to 1) and 3 support points
(one is omitted if - as typically is the case - xit contains a constant). So that�s
6 parameters compared to 1 parameter for the traditional random e¤ects probit
based on normality. That is the consequence of attempting to estimate the
entire distribution of c.

Unfortunately, implementing this model is often di¢ cult:

� Sometimes the estimator will not converge.

� Convergence may well occur at a local maximum.



� Inverting the Hessian in order to get standard errors may not always be
possible.

So clearly the additional �exibility comes at a cost. Whether that is worth
incurring depends on the data and (perhaps primarily) the econometrician�s
preferences. We used this approach in the paper "Do African manufacturing
�rms learn from exporting?", JDS, 2004, and we obtained some evidence this
approach outperformed one based on normality.

Allegedly, the Stata program gllamm can be used to produce results for this
type of estimator.�

�http://www.gllamm.org/



3.6 Dynamic Unobserved E¤ects Probit Models

Earlier in the course you have seen that using lagged dependent variables as
explanatory variables complicates the estimation of standard linear panel data
models. Conceptually, similar problems arise for nonlinear models, but since we
don�t rely on di¤erencing the steps involved for dealing with the problems are
a little di¤erent.

Consider the following dynamic probit model:

y�it = �yi;t�1 + zit� + ci + uit;

yit = 1 [y�it > 0] ;

and

Pr (yit = 1jxit; ci) = �
�
�yi;t�1 + zit� + ci

�
;



where zit are strictly exogenous explanatory variables (what follows below is
applicable for logit too). With this speci�cation, the outcome yit is allowed to
depend on the outcome in t� 1 as well as unobserved heterogeneity. Observa-
tions:

� The unobserved e¤ect ci is correlated with yi;t�1 by de�nition

� The coe¢ cient � is often referred to as the state dependence parameter.
If � 6= 0, then the outcome yi;t�1 in�uences the outcome in period t,
yit.

� If var (ci) > 0, so that there is unobserved heterogeneity, we cannot use
a pooled probit to test H0 : � = 0. The reason is that under var (ci) > 0,
there will be serial correlation in the yit.



In order to distinguish state dependence from heterogeneity, we need to allow
for both mechanisms at the same time when estimating the model. If ci had
been observed, the likelihood of observing individual i would have been

TY
t=1

h
�
�
�yi;t�1 + zit� + ci

�iyit h
1� �

�
�yi;t�1 + zit� + ci

�i(1�yit)
:

As already discussed, unless T is very large, we cannot use the dummy variables
approach to control for unobserved heterogeneity. Instead, we will integrate out
ci using similar techniques to those discussed for the nondynamic model.

� However, estimation is more involved because yi;t�1 is not uncorrelated
with ci.

Now, we observe in the data the series of outcomes (yi0; yi1; yi2; :::; yiT ).
Suppose for the moment that yi0 is actually independent of ci. Clearly this



is not a very attractive assumption, and we will relax it shortly. Under this
assumption, however, the likelihood contribution of individual i takes the form

f (yi1; yi2; :::; yiT ; ci) = fy(T )jy(T�1);ci
�
yiT ; yi;T�1; ci

�
�fy(T�1)jy(T�2);ci

�
yi;T�1; yi;T�2; ci

�
�fy2jy1;ci (yi2; yi1; ci)
�fy1jy0;ci (yi1; yi0; ci)
�fy0 (yi0) ;

and so we can integrate out ci in the usual fashion:

f (yi1; yi2; :::; yiT ) = fy0 (yi0)
Z
fy(T )jy(T�1);c

�
yiT ; yi;T�1; c

�
(8)

�fy(T�1)jy(T�2);c
�
yi;T�1; yi;T�2; c

�
� :::

:::� fy2jy1;c (yi2; yi1; c)� fy1jy0;c (yi1; yi0; c) fc (c) dc:

The dependence of yi1 on ci in the likelihood contribution fy2jy1;c (yi2; yi1; c)
is captured by the termfy1jy0;c (yi1; yi0; c), the dependence of yi2 on ci in the



likelihood contribution fy3jy2;c (yi3; yi2; c) is captured by the term fy2jy1;c (yi1; yi0; c) ;
and so on.

� Consequently the right-hand side of (8) really does result in f (yi1; yi2; :::; yiT ),
i.e. a likelihood contribution that is not dependent on ci.

� However, key for this equality to hold is that there is no dependence be-
tween yi0 and ci - otherwise I would not be allowed to move the density
of yi0 out of the integral.

Suppose now I do not want to make the very strong assumption that yi0 is



actually independent of ci. In that case, I am going to have to tackle

f (yi1; yi2; :::; yiT ) =
Z
fy(T )jy(T�1);c

�
yiT ; yi;T�1; c

�
�fy(T�1)jy(T�2);c

�
yi;T�1; yi;T�2; c

�
�fy2jy1;c (yi2; yi1; c)� fy1jy0;c (yi1; yi0; c)
�fy0jc (yi0; c) fc (c) dc:

The dynamic probit version of this equation is

Li
�
yi1; :::; yiT jxi1; :::;xiT ;�;�2c

�
=

Z TY
t=1

h
�
�
�yi;t�1 + zit� + c

�iyit
�
h
1� �

�
�yi;t�1 + zit� + c

�i(1�yit)
fy0jc;z(i) (yi0; zi; c) (1=�c)� (c=�c) dc:

Basically I have an endogeneity problem: in fy0jc;z(i) (yi0; zi; c) ; the regressor
yi0 is correlated with the unobserved random e¤ect. This is usually called



the initial conditions problem. Clearly as T gets large the problem posed
by the initial conditions problem becomes less serious (smaller weight of the
problematic term), but with T small it can cause substantial bias.



3.6.1 Heckman�s (1981) solution

Heckman (1981) suggested a solution. He proposed dealing with fy0jc;z(i) (yi0; zi; c)
by adding an equation that explicitly models the dependence of yi0 on ci and
zi. It�s conceivable, for example, to assume

Pr (yi0jzi; ci) = � (� + zi� + ci) ;

where �;�; are to be estimated jointly with the �; � and �. The key thing to
notice here is the presence ci. Clearly, if  6= 0, then ci is correlated with the
initial observation yi0.

Now write the dynamic probit likelihood contribution of individual i as

Li
�
yi1; :::; yiT jxi1; :::;xiT ;�;�2c

�
=



Z TY
t=1

h
�
�
�yi;t�1 + zit� + c

�iyit h
1� �

�
�yi;t�1 + zit� + c

�i(1�yit)
[� (� + zi� + c)]yi0 [1� � (� + zi� + c)](1�yi0) (1=�c)� (c=�c) dc:

A maximum likelihood estimator based on a sample likelihood function made
up of such individual likelihood contributions will be consistent, under the as-
sumptions made above.

The downside of this procedure is that you have to code up the likelihood
function yourself. I have written a SAS program that implements this estimator
(heckman81_dprob) - one day I might translate this into Stata code...



3.6.2 Wooldridge�s (2005) solution

An alternative approach, which is much easier to implement than the Heckman
(1981) estimator, has been proposed by Wooldridge. It goes like this.

� Rather than writing yi0 as a function of ci and zi (Heckman, 1981), we
can write ci as a function of yi0 and zi:

ci =  + �0yi0 + zi� + ai;

where ai � Normal
�
0; �2a

�
and independent of yi0; zi.

� Notice that the relevant likelihood contribution

Li
�
yi1; :::; yiT jxi1; :::;xiT ;�;�2c

�
=



Z TY
t=1

h
�
�
�yi;t�1 + zit� + c

�iyit h
1� �

�
�yi;t�1 + zit� + c

�i(1�yit)
fy0jc;z(i) (yi0; zi; c) (1=�c)� (c=�c) dc:

can be expressed alternatively as

Li
�
yi1; :::; yiT jxi1; :::;xiT ;�;�2c

�
=

Z TY
t=1

h
�
�
�yi;t�1 + zit� + c

�iyit h
1� �

�
�yi;t�1 + zit� + c

�i(1�yit)
fcjy0;z(i) (yi0; zi; c) (1=�c)� (c=�c) dc;

or, given the speci�cation now adopted for c,

Li
�
yi1; :::; yiT jxi1; :::;xiT ;�;�2a

�
=



Z TY
t=1

h
�
�
�yi;t�1 + zit� +  + �0yi0 + zi� + a

�iyit
h
1� �

�
�yi;t�1 + zit� +  + �0yi0 + zi� + a

�i(1�yit)
fa (a) (1=�a)� (a=�a) da:

Hence, because a, is (assumed) uncorrelated with zi and yi0, we can
use standard random e¤ects probit software to estimate the parameters
of interest. This approach also allows us, of course, to test for state
dependence (H0 : � = 0) whilst allowing for unobserved heterogeneity
(if we ignore heterogeneity, we basically cannot test convincingly for state
dependence).

� Notice that Wooldridge�s method is very similar in spirit to the Mundlak-
Chamberlain methods introduced earlier.

[EXAMPLE 6. To be discussed in class.]



4 Extension I: Panel Tobit Models

The treatment of tobit models for panel data is very similar to that for probit
models. We state the (non-dynamic) unobserved e¤ects model as

yit = max (0;xit� + ci + uit) ;

uitjxit; ci � Normal
�
0; �2u

�
:

We cannot control for ci by means of a dummy variable approach (inciden-
tal parameters problem), and no tobit model analogous to the "�xed e¤ects"
logit exists. We therefore consider the random e¤ects tobit estimator (Note:
Honoré has proposed a "�xed e¤ects" tobit that does not impose distributional
assumptions. Unfortunately it is hard to implement. Moreover, partial e¤ects
cannot be estimated. I therefore do not cover this approach. See Honoré�s web
page if you are interested).



4.1 Traditional RE tobit

For the traditional random e¤ects tobit model, the underlying assumptions are
the same as those underlying the traditional RE probit. That is,

� ci and xit are independent

� the xit are strictly exogenous (this will be necessary for it to be possible to
write the likelihood of observing a given series of outcomes as the product
of individual likelihoods).

� ci has a normal distribution with zero mean and variance �2c



� yi1; :::; yiT are independent conditional on (xi; ci) ; ruling out serial cor-
relation in yit, conditional on (xi; ci) : This assumption can be relaxed:

Under these assumptions, we can proceed in exactly the same way as for the
traditional RE probit, once we have changed the log likelihood function from
probit to tobit. Hence, the contribution of individual i to the sample likelihood
is

Li
�
yi1; :::; yiT jxi1; :::;xiT ;�;�2c

�
=

Z TY
t=1

"
1� �

 
xit� + c

�u

!#1[yi=0]
[� ((yit � xit� � c) =�u) =�u]

1[yi=1] (1=�c)� (c=�c) dc:

This model can be estimated using the xttobit command in Stata.



4.2 Modelling the random e¤ect as a function of x-variables

The assumption that ci and xit are independent is unattractive. Just like for
the probit model, we can adopt a Mundlak-Chamberlain approach and specify
ci as a function of observables, eg.

ci =  + �xi� + ai:

This means we rewrite the panel tobit as

yit = max (0;xit� +  + �xi� + ai + uit) ;

uitjxit; ai � Normal
�
0; �2u

�
:

From this point, everything is analogous to the probit model (except of course
the form of the likelihood function, which will be tobit and not probit) and so



there is no need to go over the estimation details again. Bottom line is that
we can use the xttobit command and just add individual means of time varying
x-variables to the set of regressors. Partial e¤ects of interest evaluated at the
mean of ci are easy to compute, since

E (ci) =  + E (�xi) �:



4.3 Dynamic Unobserved E¤ects Tobit Models

Model:

yit = max
�
0; �yi;t�1 + zit� + ci + uit

�
;

uitjzit; yi;t�1; :::; yi0; ci � Normal
�
0; �2u

�
:

Notice that this model is most suitable for corner solution outcomes, rather than
censored regression (see Wooldridge, 2002, for a discussion of this distinction)
- this is so because the lagged variable is observed yi;t�1, not latent y�i;t�1.
The discussion of the dynamic RE probit applies in the context of the dynamic
RE tobit too. The main complication compared to the nondynamic model is
that there is an initial conditions problem: yi0 depends on ci. Fortunately, we
can use Heckman�s (1981) approach or (easier) Wooldridge�s approach. Recall



that the latter involves assuming

ci =  + �0yi0 + zi� + ai;

so that

yit = max
�
0; �yi;t�1 + zit� +  + �0yi0 + zi� + ai + uit

�
:

We thus add to the set of regressors the initial value yi0 and the entire vector
zi (note that these variables will be "time invariant" here), and then estimate
the model using the xttobit command as usual. Interpretation of the results
and computation of partial e¤ects are analogous to the probit case.



5 Sample selection panel data models

Model:

yit = xit� + ci + uit; (Primary equation)

where selection is determined by the equation

sit =

(
1 if zit + di + vit � 0
0 otherwise

)
: (Selection equation)

Assumptions regarding unobserved e¤ects and residuals are as for the RE tobit-

� If selection bias arises because ci is correlated with di, then estimating
the main equation using a �xed e¤ects or �rst di¤erenced approach on the
selected sample will produce consistent estimates of �.



� However, if corr (uit; vit) 6= 0, we can address the sample selection prob-
lem using a panel Heckit approach. Again, the Mundlak-Chamberlain ap-
proach is convenient - that is,

� Write down speci�cations for ci and di and plug these into the equa-
tions above

� Estimate T di¤erent selection probits (i.e. do not use xtprobit here,
use pooled probit). Compute T inverse Mills ratios.

� Estimate

yit = xit� + xi�+D1�1�̂1 + :::+DT�T �̂T + eit;

on the selected sample. This yields consistent estimates of �, provided
the model is correctly speci�ed.


