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Appendix A. Conceptual framework

Appendix A provides the theoretical framework that motivates our empirical analysis. The focus

of our attention is adoption, that is, the �rst usage of a new product or service by someone who

has not used it before. We are interested in how social networks in�uence adoption. We propose

a model of social learning inspired, among others, by the work of Young (2009), except that our

model explicitly distinguishes between learning about the existence of a product and learning

about its attributes.1 Since the purpose of the model is solely to provide a theoretical basis

for our identi�cation strategy, we ignore the equilibrium properties of this learning process and

abstract from the topological properties of the social network (see, e.g., Jackson and Yariv 2005,

Jackson 2008, Kreindler and Young 2014 and Arieli et al. 2020 for details).

In the �rst part of the presentation, we ignore the possibility of network externalities in

usage and we focus exclusively on social learning. Since network externalities and other sources

of correlation in usage are regarded as confounds in our testing strategy, they are only discussed

brie�y at the end.

Formally, let usage of a product yit = f0; 1g be a dichotomous variable equal to 1 if individual

i uses the product at time t, and 0 otherwise. We think of time as a sequence of time intervals,

e.g., a week. Adoption describes the �rst time at which yit > 0 for individual i. Let ti denote

the time at which individual i becomes �at risk�of adopting the product.2 Further let Ti denote

the time at which individual i �rst uses the product. Finally, let T denote the last data period

for which we have information. By de�nition, Ti > T for an individual who, by time T , has not

yet used the product. As we will argue below, usage after adoption provides useful information

1Young (2009) also considers di¤usion by contagion or conformism. They are ignored here since we do not
regard them as relevant in our context. To the extent that they do exist in our study, however, they would
presumably apply to usage as well and, as such, would be subsumed in the network extenalities we discuss below.

2This can be the time at which the new product is introduced, or the time at which i acquires a device for
which product is useful.
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as well. Usage yit can therefore be divided into two vectors or periods: the time until �rst

usage fyiti ; :::yiTig; and usage after that fyiTi+1; :::yiT g. By construction, fyiti ; :::yiTig is either

a sequence of 0�s ending with a single 1, or a string of 0�s (for someone who never adopts). The

length of each of the two i vectors varies across individuals.

We are interested in identifying predictors of yit that depend on the adoption and usage

behavior of the social neighbors of i. To do so e¤ectively, we present a few simple concepts

before articulating our testing strategy. We �rst discuss social learning, before introducing

network externalities. We assume throughout that the researcher has information about yit.

Social learning about product existence

There is much to learn from simple models of social learning. Let us �rst focus on information

about the existence of the product. We then turn to information about the qualities of the

product. We end with a short discussion of experimentation, which is adoption purely for the

purpose of eliciting information about product quality. The focus of this section is to use simple

models to develop intuition about social learning that we can then take to the data. The building

blocks of the model are inspired by Young (2009).

Learning about the existence of the new product closely resembles a contagion process (e.g.,

Bass 1969). Without information about the existence of the product, the agent simply cannot

adopt. Hence having been exposed to information about the product is a necessary condition for

adoption. This information can come from two sources: (1) information received from various

sources outside the social network (e.g., ads on billboard, radio, TV, junk mail, or newspaper);

and (2) information received from the social network (e.g., friends, relatives, co-workers).

Let �vt denote the probability of receiving information from outside the social network in

location v at time t. We take this probability as given and we do not seek to model its de-
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terminants. But we think of it as having a strong local component, capturing the local nature

of advertisement coverage. A simple model for the probability of receiving information from a

social source at time t can be formulated as:

Pr(i receives information from network at t+ 1) = 1� (1� q)�Ait

where �Ait is the number of neighbors of i who have started using the product in period t �

and thus have become aware of its existence and can relay this information to i, something each

of them does with probability q. We assume that the researcher observes �Ait, or a close proxy.

The cumulative probability that i has received information about the existence of the product

is thus an increasing and concave function of the cumulative number of i�s neighbors who have

adopted at t �and thus could have passed information about the product to i with probability

q during that time period.

Let us now combine the two sources of information. If we assume independence between �vt

and the signal received from each neighbor, the probability of not being informed within period

t is (1 � �vt)(1 � q)�Ait . Now let us assume that, once i is informed that the product exists, i

adopts with probability pi. This is the probability of usage in any given period, conditional on

knowing about the product. For some individuals this probability is low; for others it is high.

Over time the likelihood of having heard of the product increases. Formally, the probability

of not having heard of the product between time ti and t is:

Pr =

tY
s=ti

(1� �vs)(1� q)�Ais = (1� q)Ait
tY

s=ti

(1� �vs)

where Ait �
Ps=t
s=ti

�Ais is the cumulative number of adopting neighbors between ti and t, and

ti is the time at which i starts being at risk of being exposed to information about the product�s
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existence. If �vt is constant over time for location v, the formula simpli�es to:

Pr = (1� q)Ait(1� �v)Sit

where Sit � t� ti is the time elapsed between ti and t:

The probability that agent i adopts the product at time t is the probability that he has been

informed times pi:

Pr(yit+1 = 1jfyiti ; :::; yitg = f0; :::; 0g) = [1� (1� q)Ait(1� �v)Sit ]pi (A1)

Adoption can take place even for someone who has no social neighbors, or whose neighbors

have not adopted. The model predicts that the likelihood of adoption increases in a systematic

fashion over time, without or without adopting neighbors. This is a mechanical e¤ect: as time

passes, the agent has more and more chances of hearing about the product. The probability of

�rst adoption increases with time since inception Sit and with Ait, although in both cases the

e¤ect is concave: the derivative of the probability of adoption with respect to. Sit and Ait falls

with Sit and with Ait. This is because having heard about the product once is enough to know

of its existence.

Once the product has been used once, i may continue using it with a certain probability.

But if the only source of network e¤ects is social learning about the existence of the product,

the probability of usage after �rst adoption is no longer a function of the number of adopting

neighbors. Formally we have:

Pr(yit+1 = 1jyis = 1 for some s < t) = pi + "it+1 (A2)

5



Thus once i has learned about the existence of the product, the data generating process

shifts from (A1) to (A2). An identical prediction is made if the researcher observes a signal Mit

that is equal to 1 when individual i has unambiguously been made aware of the existence of the

new product, and 0 otherwise:

Pr(yit+1 = 1jMis = 1 for some s < t) = pi + "it+1 (A3)

To recap, when network neighbors circulate information about product existence and nothing

more, the probability of adoption increases in the number of adopting neighbors, but at a

decreasing rate. After �rst adoption or after becoming aware of the product, subsequent usage

does not depend on the number of adopting neighbors.

Social learning about product quality

We get di¤erent predictions if social learning is about product quality. In this case, the decision

to adopt at time t depends not on the probability of receiving a signal within a given time

interval, but rather on the cumulative information about the product received up to time t (e.g.,

Bala and Goyal 1998, Jackson 2008).

To keep the same notation, let �vt now denote the probability that individual i receives an

independent signal about the quality of the product at time t. This probability can vary over

time t and across locations v. To keep things simple, let us assume that this signal takes only

two values, 0 and 1, i.e., a bad signal or a good signal. Let � denote the true probability that

the product performs: a high � good always performs well, while a low � good often performs

poorly. Individuals di¤er in how much they value unobserved quality � �more about this later.

We assume that the posterior belief hit of individual i at time t is simply the sample estimate
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of the unknown Bernoulli parameter � based on the information available to i at time t.3 Let

Nit be the number of signals received by i at up to t and let N1
it be the number of signals with

value 1, i.e., the number of good signals. We have:

hit =
N1
it

Nit
(A4)

The variance of this belief is approximately given by:

v2it =
1

Nit
hit(1� hit) (A5)

As sample size increases, hit tends to � and v2it tends to 0.
4

Since we do not observe what signal people observe, we never know what N1
it is. But we can

write:

hit = �+ eit with eit ~ (0; �(1� �)=Nit)

In other words, the information people have is, on average, unbiased and the variance of their

beliefs shrinks over time.

If we allow agents to hold a prior belief hi0, this belief can be regarded as coming from a

sample of observations Ni0 that we do not observe. The point estimate of this belief marks how

biased the prior belief is, and the size of the sample determines how con�dent the agent is in his

3This is simpli�ed Bayesian approach �see Mood, Graybill and Boes (1974) p. 342 for the correct Bayesian
estimator of a Bernouilli parameter. But this simple approach su¢ ces for our purpose.

4The above formula for the variance is obtained by combining Mood et al. (1974) p. 236 with p. 89.
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prior belief. This can be formalized as follows:

hi0 =
N1
i0

Ni0

hbit =
N1
i0 +N

1
it

Ni0 +Nit
= hi0

Ni0
Ni0 +Nit

+ hit
Nit

Ni0 +Nit

v2it =
1

Ni0 +Nit
hbit(1� hbit)

where hbit now denotes the posterior belief of agent i at t. We do not observe hi0 and Ni0. If we

let the number of signals received be denoted nit, beliefs can be written as following a model of

the form:

qbit = �


 + nit
+ �

nit
 + nit

+ ebit with e
b
it~(0; �

2
it)

�2it =
1

 + nit
(�



 + nit
+ �

nit
 + nit

)(1� � 

 + nit
� � nit

 + nit
)

As with uninformed priors, beliefs hbit tend to � over time, but they show some persistence

around initial priors.5

Having modelled learning, we now turn to adoption. We start without prior beliefs. We

assume that individuals di¤er in the threshold value of � that they require before adopting.

At �rst glance, it seems that we could simply assume that people adopt if their estimate of �

is larger than some value � i with 0 < � i < 1. This decision rule, however, is too crude. It

predicts that people adopt after a single good signal since, in that case, their posterior belief

is hi1 = 1 � � i for any � i. This is clearly an unappealing decision rule because an estimate

of � based on a single observation is very imprecise. To capture this intuition in the simplest

5The variance �2it is not monotonic over time, however. Intuition is as follows. Imagine the agent starts with
a strong prior far from � (a strong prior means Ni0 is large). Initially �2it is quite small because it is dominated
by the strong prior. As more information is revealed, posterior beliefs are progressively pulled away from prior
hi0 and �2it increases. Eventually posterior beliefs settle on � and the variance falls, dominated now by Nit.
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possible way, we posit that the expected utility of adoption E[Uit(yit = 1)j!it] can be written

as a mean-variance form. We have:

yit+1 = 1 i¤ hit �Rv2it � � i

where R is a risk aversion parameter and � i is now a threshold value of expected utility. Since

we do not observe hit and v2it directly, we replace them by formulas (A4) and (A5) above and

we get:

Pr(yit+1 = 1jfyiti ; :::; yitg = f0; :::; 0g) = Pr
�
(�� � i)�R

�(1� �)
nit

� �eit+1
�

(A6)

Equation (A6) shows that the probability of adoption increases with nit. The intuition is

straightforward: the variance term shrinks and vanishes at the limit, and this raises the ex-

pected utility of adoption for some people. Not everybody adopts, however, because � is not

higher than � i for everyone.

We can now generalize the above to the case where people hold prior beliefs. We now have:

Pr(yit+1 = 1jfyiti ; :::; yitg = f0; :::; 0g) = (A7)

Pr

�
�



 + nit
+ �

nit
 + nit

+R
1

 + nit
(�



 + nit
+ �

nit
 + nit

)(1� � 

 + nit
� � nit

 + nit
) � � it � ebit+1

�

To close the model, we need to stipulate the data generating process of nit, the number of signals

received. In practice, we do not observe nit but, by analogy with the previous sub-section, we

expect it to be an increasing function of time since inception Sit and of the number of adopting

neighbors Ait. To show this formally, let us assume that in each period individual i receives
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a signal from outside his network with a constant location-speci�c probability �v,6 and with

probability q individual i receive a signal from any newly adopting neighbor. The expected

number of signals received at time t is a sum of two binomial processes. The average number of

signals received outside the network up to time is given by a binomial process with parameter

�v and Sit, and is simply �vSit. The average number of signals from the networks is qAit. Thus

we have:7

nit = �vSit + qAit + uit with uit~(0; v2) (A8)

Without prior beliefs, the probability of adoption can thus be written:

Pr(yit+1 = 1jfyiti ; :::; yitg = f0; :::; 0g) = Pr
�
(�� � i)�R

�(1� �)
�vSit + qAit + uit

� �eit+1
�

(A9)

Equation (A9) shows that the probability of �rst adoption is monotonically increasing in Sit and

Ait.

The probability of adoption with prior beliefs is similarly obtained by replacing nit in equation

(A7) by its value given by (A8). Our earlier observation remains valid: with strong prior beliefs,

the variance term that multiplies R in equation (A7) can initially be quite small. If the prior

belief hi0 is high and its variance v2i0 is small, individual i will adopt immediately. The social

learning model therefore predict that individuals with strong optimistic priors adopt early. So

doing, they receive information about the quality of the product, information that they may

circulate among their social circle. If the information is su¢ ciently bad, i.e., if revealed quality

is less than � i, early adopters will abandon the new product, and the information that di¤uses

6To keep the algebra simple and derive the intuition clearly, we ignore here the possibility of a time-varying
signal probability.

7Where, given our assumptions, v2 can in principle be calculated from the variance formula for binomial
distributions.
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among the social network will discourage adoption by others. If the information is su¢ ciently

good, its di¤usion in the network will progressively raise posterior beliefs according to equation

(A7) and adoption will spread among individuals with a su¢ ciently high valuation � i for the

product. Because the accumulation of information eventually reduces the variance of posterior

beliefs, adoption is an increasing function of the information received, and thus of the number

of adopting neighbors.

What happens after an individual has adopted the product once? In the context of our

empirical application, it is natural to assume that usage reveals a lot of relevant information

about the product. To capture this idea in a stylized way, let us imagine that using the product

once perfectly reveals the quality of the product. It follows that usage is now driven by � i; social

learning no longer matters. Formally we have:

Pr(yit+1 = 1jyis = 1 for some s � t) = Pr ((�� � i) � �eit+1) (A10)

which does not depend on time or adopting neighbors.

What happens if individual i is observed to receive an unambiguous signal revealing the

existence of the product? In this case, this signal does not, by itself, dispel uncertainty about

the quality of the product and thus should not eliminate the role of social learning in reducing

uncertainty about the net bene�t of adoption. In other words, adoption continues to follow

equation (A7) after Mit = 1. This is di¤erent from what happens when social learning only

a¤ects knowledge about the existence of the product, and thus provides a way of identifying

which type of social learning is present in the data.

To summarize, when social learning is purely about product quality, the likelihood of adop-

tion is predicted to increase over time as the number of adopting neighbors rises, irrespective of

whether the individual received a signal about product existence or not, that is, whetherMis = 1
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or not. After �rst adoption, however, the role of social learning essentially disappears and the

probability of continued usage is no longer a function of the number of adopting neighbors. In

contrast, if social learning is solely about product existence, the data generating process switches

to (A3) after Mis = 1. This makes it possible to test the two learning models against each other

even in a reduced form. If social learning combines both elements, then we expect the coe¢ cient

of Ait to be signi�cantly lower after Mis = 1, but to remain positive until �rst adoption.

Network externalities and strategic complementarities

Social learning can be seen as a network externality: individuals bene�t from the information

accumulated and shared by others. We have shown that social learning generates a correlation

between neighbors�adoption and own adoption by individual i. There are many other network

externalities that similarly induce strategic complementarities but do not involve learning. The

main distinction between these other strategic complementarities and social learning is that

social learning disappears after i has used the product at least once, while other strategic com-

plementarities do not. This simple observation forms the basis of our identi�cation strategy

between social learning and other network externalities, as explained in the Testing Strategy

Section of the main text.
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Appendix B: Contemporaneous common shocks

Arguably the biggest threat to our identi�cation strategy is common shocks. As explained

in the main text, we deal with this issue in several ways. We �rst-di¤erence our regressions

to net out any highly persistent common shocks a¤ecting the dependent variable yit and our

main regressors of interest; we include a large number of dummy variables controling for shocks

shared across various geographical entities; and we use the correlation between �yit and �Ait

after adoption as control for any added e¤ect of social learning before adoption. In this section of

the Appendix we discuss in detail how we address the possibility of remaining contemporaneous

common shocks between yit and Ait.

Common shocks and usage

We start by examining the e¤ect of contemporaneous common shocks on usage. To keep the

notation simple, we consider a case in which individual i has a single neighbor. Extending

to multiple neighbors is straightforward. Let y�it be a latent variable reprensenting the bene�t

that user i expects to derive from ME2U at time t, and let y�jt be the expected bene�t to user

j who is the sole neighbor of i: Imagine that the bene�t from usage is subject to a common

contemporaneous shock ct:

y�it = ct + eit

y�jt = ct + ejt

where ct is an i.i.d. shock, common to i and j, with mean 0 and standard deviation �c and eit

is an i.i.d. idiosyncratic shock with mean 0 and standard deviation normalized to 1.8 There

8This normalization of the standard deviation is without loss of generality since, in practice, we do not observe
y�it.
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are no social learning or network e¤ects in this model; any correlation in adoption and/or usage

between i and j would thus be the result of correlated shocks. Usage of ME2U is denoted by

the dichotomous variable yit = f0; 1g, de�ned by:

Pr(yit = 1) = 1[y
�
it > � ] (B1)

where 1[:] is an indicator function and � is the threshold value of y�it above which usage takes

place.

It is immediately apparent that y�it and y
�
jt are positively correlated since they share the

common shock ct. This property also holds for �y�it � y�it � y�i;t�1 and �y�jt since they share

common term ct � ct�1. Lagging �y�jt by one period, however, changes the nature of this

correlation since:

�y�it = ct � ct�1 + eit � ei;t�1 (B2)

�y�jt�1 = ct�1 � ct�2 + ejt�1 � ej;t�2 (B3)

The covariance between �y�it and �y
�
jt�1 is now negative since the only shared term is ct�1 which

appears with opposite signs in the two expressions. It follows that if we regress �y�it on �y
�
jt�1,

we obtain a negative coe¢ cient, the magnitude of which depends on �c. These properties are

inherited by yit and yjt. Based on this, a positive correlation between �yit on �yjt�1 cannot be

accounted for by contemporaneous common shocks. Contemporaneous common shocks do not,

however, induce any correlation between �y�it and �y
�
jt�2 �or between �yit on �yjt�2 �since,

as shown in equation (B4), they do not include any common terms.

�y�jt�2 = ct�2 � ct�3 + ejt�2 � ej;t�3 (B4)
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This can be generalized to common shocks extending over two periods. Let�s now assume

that:

y�it = ct + eit + ct�1 (B5)

y�jt = ct + ejt + ct�1 (B6)

where  � 1 captures the e¤ect of the lagged common shock on current expected bene�t from

usage. Again we see that y�it and y
�
jt are positively correlated since they share the term ct+ct�1.

Lagging �y�jt by one period we now have:

�y�it = ct � (1� )ct�1 + eit � ei;t�1 � ct�2

�y�jt�1 = ct�1 � (1� )ct�2 + ejt�1 � ej;t�2 � ct�3

We now see that �y�it on �y
�
jt�1 share two common terms: ct�1, which appears with opposite

signs (�(1 � ) and +1); and ct�2 which appears with the same sign (� and �(1 � )). It

follows that the negative correlation between �y�it on �y
�
jt�1 falls as  increases, and disappears

if  = 1. In other words, when common shocks a¤ect the bene�ts from usage over two periods,

the negative correlation between �y�it on �y
�
jt�1 tends to disappear. Simulations show that

things are slightly di¤erent for �yit on �yjt�1: the negative correlation between them also falls

as  tends to 1; but it never fully disappears and remains negative throughout. We suspect that

this arises due to the fact that the transformation 1[y�it > � ] is non-linear, which means that the

covariance between �yit on �yjt�1 is not additively separable in ct and eit. The main conclusion

remains, however: it is not possible to explain a positive correlation between �yit on �yjt�1 by

using contemporaneous or two-period common shocks. A negative correlation between them is,

however, compatible with the existence of such common shocks.
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With two-period common shocks, there is a negative correlation between �y�it and �y
�
jt�2

(see equation B7) which increases with . But, as is clear from equation (B8) there is no

correlation between �y�it and �y
�
jt�3.

�y�jt�2 = ct�2 � (1� )ct�3 + ejt�2 � ej;t�3 � ct�4 (B7)

�y�jt�3 = ct�3 � (1� )ct�4 + ejt�3 � ej;t�4 � ct�5 (B8)

Common shocks and adoption

In the speci�c regression format used in our paper, the regressor of interest is the cumulative

adoption by neighbors, which is denoted as Ait, and the main regressions of interest regress �yit

on the lagged �rst-di¤erence in Ait. Two main regressions are estimated, depending on whether

zit = 0 (not adopted yet) or zit = 1 (used at least once). We also allow for growth in the size

of i�s neighborhood of potential adopters. All these modi�cations are introduced because they

correspond to the predictions regarding adoption and usage derived from the model presented in

the paper, and they are essential to our testing strategy. Here we ask what these modi�cations

imply for estimated coe¢ cients of interest in the presence of common shocks to y�it.

We start by noting that the observations made so far extend to the regressions estimated on

usage, that is, for zit = 1. Unlike �yjt�1; �Ajt�1 is never negative. It remains, however, that

common shock ct�1 a¤ects adoption by neighbors and therefore enters the construction of both

�yit and �Ajt�1, albeit with a di¤erent sign. This generates the same prediction of a negative

correlation between �yit and �Ajt�1 in the presence of common shocks.

The situation is di¤erent in the adoption regression of �yit on �Ajt�1 where we only use

observations for which zit�1 = 0, meaning that ME2U had not yet been adopted by i in the
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previous period. In these adoption regressions, we �nd that, when we allow for two-period

common shocks (i.e.,  > 0), we obtain, on average, a positive coe¢ cient on �Ajt�1. This

di¤erence is due to the fact that we only consider positive changes, i.e., situations in which

�yit = f0; 1g; negative changes are omitted. This has the mechanical e¤ect of dropping all

observations involving �yit = �1, thereby curtailing any negative correlation with �Ajt�1

which, by construction, only takes values f0; 1g as well.

The important thing to note, however, is that, in both the adoption and usage regressions,

�yit+1 on �Ajt�1 are uncorrelated in the presence of contemporaneous common shocks, and

that �yit+1 on �Ajt�2 are uncorrelated in the presence of two-period common shocks.
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Appendix C. Assessing the bias arising from unobservable selection

Oster (2019) shows how the size of the bias posed by unobservable selection, under certain

assumptions, can be inferred from coe¢ cient and R-squared di¤erences across models with

di¤erent sets of control variables. Adopting Oster�s notation, let the parameter � denote the

proportional selection relationship. If unobservable and observable factors are equally related

to treatment, � = 1; if unobservable are more strongly related to treatment than observable

factors, � > 1; and if observable factors are more strongly related to treatment than observables,

� < 1. Further, let Rmax denote the R-squared from a hypothetical regression of the dependent

variable on the treatment variable and the observable and unobservable determinants of the

dependent variable. For a model that is linear in a single treatment variable, Oster shows

how the bias on the treatment coe¢ cient obtained from a regression where observable but not

unobservable factors are included can be written as approximately equal to �
h
�0 � e�i [Rmax� eR]eR�R0 ;

where �0 denotes the coe¢ cient resulting from the short regression of the dependent variable

on the treatment variable with observable control variables excluded; R0 is the R-squared from

the short regression; e� is the coe¢ cient from the regression with observable control variables

included, and eR is the R-squared from that regression. Clearly, the bias in e� can be severe if:
unobservable factors are strongly related to treatment (in which case � is high); if the treatment

coe¢ cient changes considerably as a result of the addition of observable control variables (in

which case
h
�0 � e�i is high) while at the same time the R-squared doesn�t move much (in which

case eR � R0 is low); and/or if the unobservable factors (would) have considerable explanatory
power (in which case Rmax � eR is high). Of course, neither � nor Rmax is observable, but the

bias formula above is nevertheless useful as it enables researchers to quantify the bias for speci�c

values of � and Rmax: Clearly, if there is no movement in the treatment coe¢ cient as we move

from the short regression to the regression with observable controls included, Oster�s framework
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implies that there is no bias, regardless of the values of � and Rmax.

Results are shown in Table C1.
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Table C.1
First Adoption: Robustness to selection on unobservables

(1) (2) (3) (4) (5)
Linear model: Linear model: Bias adjusted β Bias adjusted β δ  for β =0

Partially controlled Fully controlled
ΔA(i,t-2) 0.0041 0.0039 0.0031 0.0023 0
s.e. 0.0005 0.0005 -- -- --
R-squared 0.031 0.038

1.0 2.0 4.1
0.077 0.077 0.077

Controls
ΔS(it)^2 Y Y
Year x month Y N
District Y N
Cell tower Y Y
Year x month x district N Y

Observations 87,563 87,563
Note: Columns (1) and (2) show results for a linear specification of the form Δy(i,t+1) = β*ΔA(i,t-2) + controls + 
Δε(i,t+1). Standard errors are clustered at the district level (M=27). Columns (3)-(4) show bias-adjusted estimates 
of β, based on the approach developed by Oster (2019). Column (5) shows the value of δ for which β = 0, again 
based on Oster (2019). Oster's approach is not suitable for specifications where the potentially endogenous 
explanatory variable enters nonlinearly (as in Table 2), hence we consider linear specifications for the analysis of 
robustness to selection on unobservables. 



Appendix D. Robustness analysis

In this part of the appendix we show regression results for speci�cations corresponding to those

in Tables 2, 3 and 4 in the main paper, with alternative lag lengths for the explanatory variable

�A.
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Table D1. First Adoption: First Difference Estimates
(1) (2) (3)

Coef. s.e. Coef. s.e. Coef. s.e.
ΔA(i,t-1) 0.000736 0.00067 0.000735 0.000701 0.00062 0.000654
ΔS(it)^2 6.09E-05 3.63E-05 -0.00075 6.04E-05 -0.00073 6.61E-05
ΔA(i,t-1)^2 -3.19E-05 3.12E-06 -3.1E-05 3.85E-06 -3E-05 3.54E-06
Δ[A(i,t-1)S(it)] 0.000291 1.75E-05 0.000308 3.01E-05 0.000301 3.07E-05
R-squared 0.006004 0.035255 0.042274
Observations 91826 91826 91826
Marginal effect of A(i,t-1) at means of A(i,t-1) and S(it)
A(i,t) = sample mean 0.004788 0.000576 0.00515 0.000562 0.004961 0.00052
Marginal effects of A(i,t-1), at different levels of A(i,t-1)
A(i,t-1) = 0 0.006307 0.000697 0.006644 0.000695 0.006392 0.000649
A(i,t-1) = 20 0.005034 0.000594 0.005392 0.000582 0.005192 0.00054
A(i,t-1) = 40 0.00376 0.000502 0.00414 0.000491 0.003993 0.000448
A(i,t-1) = 60 0.002486 0.000426 0.002888 0.000436 0.002794 0.000388
A(i,t-1) = 80 0.001212 0.000378 0.001636 0.000433 0.001594 0.000374

Table D2. Generalized First Adoption Model: First Difference Estimates
(1) (2) (3)

Coef. s.e. Coef. s.e. Coef. s.e.
ΔA(i,t-1) 0.003657 0.000788 0.002849 0.000716 0.0027 0.000652
ΔS(it)^2 0.000464 4.66E-05 -0.00024 5.71E-05 -0.00028 5.68E-05
ΔA(i,t-1)^2 -8.45E-06 1.06E-05 -8.00E-06 9.76E-06 -7.65E-06 9.63E-06
Δ[A(i,t-1)S(it)] 2.04E-05 3.65E-05 5.9E-05 4.05E-05 6.29E-05 4.18E-05
Δ[m(it) x S(it)] 0.061519 0.004524
Δ[m(it) x A(i,t-1)] -0.007956 0.00161 -0.00661 0.001708 -0.00619 0.001789
Δ[m(it) x S(it)^2] -0.000968 5.79E-05 -0.00126 0.000159 -0.00112 0.000203
Δ[m(it) x A(i,t-1)^2] -2.78E-05 1.19E-05 -3.6E-05 1.4E-05 -3.6E-05 1.37E-05
Δ[m(it) x A(i,t-1) x S(it)] 0.000405 5.08E-05 0.000476 7.51E-05 0.000461 7.81E-05
R-squared 0.010074 0.047223 0.059898
Observations 90584 90584 90584
Marginal effect of A(i,t-1) at means of A(i,t-1) and S(it)
m(it) = 0 0.00366 0.000843 0.003509 0.000787 0.003438 0.000748
m(it) = 1 0.005411 0.001169 0.008555 0.001386 0.008521 0.001377
Marginal effects difference(a) -0.001751 0.001393 -0.00505 0.001571 -0.00508 0.001555

(a) This is equal to the marginal effect at m(it)=0 minus the marginal effect at m(it)=1. 

Note: The dependent variable is Δy(i,t+1). Standard errors are clustered at the district level (M=27). 
Marginal effects are evaluated at sample means of regressors (in levels). *** p<0.01 ** p<0.05 * 
p<0.10

Note: The dependent variable is Δy(i,t+1). Standard errors are clustered at the district level (M=27). 
Marginal effects are evaluated at sample means of regressors (in levels). Datapoints for which 
Δm(it)=1 (i.e. where m(it) switches from 0 to 1) are excluded for these estimations. Δ[m(it) x S(it)] is 
collinear with the fixed effects in (2) and (3), and is therefore excluded from these specifications. *** 
p<0.01 ** p<0.05 * p<0.10 



Table D3. Adoption & subsequent usage: First Difference Estimates
(1) (2) (3)

Coef. s.e. Coef. s.e. Coef. s.e.
ΔA(i,t-1) 0.000736 0.00067 0.000735 0.000701 0.00062 0.000653
ΔS(it)^2 6.09E-05 3.63E-05 -0.00075 6.03E-05 -0.00073 6.6E-05
ΔA(i,t-1)^2 -3.19E-05 3.12E-06 -3.1E-05 3.85E-06 -3E-05 3.53E-06
Δ[S(it) x A(i,t-1)] 0.000291 1.75E-05 0.000308 3.01E-05 0.000301 3.06E-05
Δ[z(it) x S(it)] -0.033173 0.001357
Δ[z(it) x A(i,t-1)] -0.003498 0.000843 -0.00336 0.000832 -0.00328 0.000791
Δ[z(it) x S(it)^2] -1.49E-05 3.34E-05 0.000806 6.24E-05 0.00079 6.8E-05
Δ[z(it) x A(i,t-1)^2] 3.44E-05 3.55E-06 3.37E-05 4.20E-06 3.23E-05 3.90E-06
Δ[z(it) x A(i,t-1) x S(it)] -0.000294 1.86E-05 -0.00031 3.01E-05 -0.0003 3.04E-05
R-squared 0.00538 0.009474 0.011005
Observations 362485 362485 362485
Marginal effect of A(i,t-1) at means of A(i,t-1) and S(it)
z(it) = 0 0.004788 0.000576 0.00515 0.000562 0.004961 0.000519
z(it) = 1 -0.00247 0.000352 -0.00224 0.000368 -0.00226 0.000364
Marginal effects difference(a) 0.007258 0.000741 0.007388 0.00071 0.007216 0.000677

(a) This is equal to the marginal effect at z(it)=0 minus the marginal effect at z(it)=1. 

Note: The dependent variable is Δy(i,t+1). Standard errors are clustered at the district level (M=27). 
Marginal effects are evaluated at sample means of regressors (in levels). Datapoints for which 
Δz(it)=1 and Δz(i,t-1)=1 (i.e. the period when z(it) switches from 0 to 1 and the subsequent period) 
are excluded for these estimations. Δ[z(it) x S(it)] is collinear with the fixed effects in (2) and (3), and 
is therefore excluded from these specifications. *** p<0.01 ** p<0.05 * p<0.10. 



Table D4. First Adoption: First Difference Estimates
(1) (2) (3)

Coef. s.e. Coef. s.e. Coef. s.e.
ΔA(i,t-3) -0.00321 0.000535 -0.00152 0.000639 -0.00163 0.000623
ΔS(it)^2 2.52E-06 4.32E-05 -0.0007 6.79E-05 -0.00067 7.48E-05
ΔA(i,t-3)^2 -2.8E-05 3.56E-06 -2.8E-05 4.89E-06 -2.7E-05 4.77E-06
Δ[A(i,t-3)S(it)] 0.000325 2.51E-05 0.000312 4.08E-05 0.000304 4.26E-05
R-squared 0.00451 0.031497 0.038791
Observations 83480 83480 83480
Marginal effect of A(i,t-3) at means of A(i,t-3) and S(it)
A(i,t) = sample mean 0.001708 0.000418 0.003159 0.00041 0.002962 0.000417
Marginal effects of A(i,t-3), at different levels of A(i,t-3)
A(i,t-3) = 0 0.003009 0.000499 0.004458 0.00056 0.004194 0.000574
A(i,t-3) = 20 0.001878 0.000426 0.003328 0.000426 0.003123 0.000435
A(i,t-3) = 40 0.000747 0.000392 0.002199 0.000354 0.002052 0.000348
A(i,t-3) = 60 -0.00038 0.000409 0.001069 0.000381 0.000981 0.000355
A(i,t-3) = 80 -0.00152 0.00047 -6.1E-05 0.000492 -9E-05 0.000451

Table D5. Generalized First Adoption Model: First Difference Estimates
(1) (2) (3)

Coef. s.e. Coef. s.e. Coef. s.e.
ΔA(i,t-3) 6.78E-05 0.000531 0.001217 0.000554 0.001013 0.00056
ΔS(it)^2 0.00042 3.51E-05 -0.00015 6.31E-05 -0.00019 6.62E-05
ΔA(i,t-3)^2 -3.43E-08 6.74E-06 -1.02E-06 7.20E-06 -5.41E-07 7.23E-06
Δ[A(i,t-3)S(it)] 4.67E-05 2.71E-05 5.01E-05 3.34E-05 5.42E-05 3.64E-05
Δ[m(it) x S(it)] 0.067199 0.005855
Δ[m(it) x A(i,t-3)] -0.00823 0.001933 -0.00838 0.002002 -0.00821 0.001955
Δ[m(it) x S(it)^2] -0.00099 4.93E-05 -0.00135 0.000199 -0.00122 0.000244
Δ[m(it) x A(i,t-3)^2] -3.2E-05 1.07E-05 -3.9E-05 1.41E-05 -3.9E-05 1.41E-05
Δ[m(it) x A(i,t-3) x S(it)] 0.000388 4.87E-05 0.000486 8.52E-05 0.000479 8.9E-05
R-squared 0.008636 0.056096 0.068506
Observations 82353 82353 82353
Marginal effect of A(i,t-3) at means of A(i,t-3) and S(it)
m(it) = 0 0.000838 0.000435 0.002006 0.000436 0.001888 0.000427
m(it) = 1 0.002437 0.001456 0.005852 0.001457 0.005747 0.001487
Marginal effects difference(a) -0.0016 0.001582 -0.00385 0.001633 -0.00386 0.001643

(a) This is equal to the marginal effect at m(it)=0 minus the marginal effect at m(it)=1. 

Note: The dependent variable is Δy(i,t+1). Standard errors are clustered at the district level (M=27). 
Marginal effects are evaluated at sample means of regressors (in levels). *** p<0.01 ** p<0.05 * 
p<0.10

Note: The dependent variable is Δy(i,t+1). Standard errors are clustered at the district level (M=27). 
Marginal effects are evaluated at sample means of regressors (in levels). Datapoints for which 
Δm(it)=1 (i.e. where m(it) switches from 0 to 1) are excluded for these estimations. Δ[m(it) x S(it)] is 
collinear with the fixed effects in (2) and (3), and is therefore excluded from these specifications. 
*** p<0.01 ** p<0.05 * p<0.10 



Table D6. Adoption & subsequent usage: First Difference Estimates
(1) (2) (3)

Coef. s.e. Coef. s.e. Coef. s.e.
ΔA(i,t-3) -0.00321 0.000535 -0.00152 0.000639 -0.00163 0.000622
ΔS(it)^2 2.52E-06 4.32E-05 -0.0007 6.79E-05 -0.00067 7.46E-05
ΔA(i,t-3)^2 -2.8E-05 3.56E-06 -2.8E-05 4.88E-06 -2.7E-05 4.76E-06
Δ[S(it) x A(i,t-3)] 0.000325 2.51E-05 0.000312 4.07E-05 0.000304 4.26E-05
Δ[z(it) x S(it)] -0.04198 0.001965
Δ[z(it) x A(i,t-3)] 0.001589 0.00091 0.000224 0.001079 0.000347 0.001036
Δ[z(it) x S(it)^2] 4.93E-05 4.09E-05 0.000755 6.64E-05 0.000731 7.37E-05
Δ[z(it) x A(i,t-3)^2] 3.01E-05 3.83E-06 2.98E-05 5.19E-06 2.83E-05 5.07E-06
Δ[z(it) x A(i,t-3) x S(it)] -0.00033 0.000026 -0.00032 4.24E-05 -0.00031 4.41E-05
R-squared 0.005171 0.008884 0.010396
Observations 353406 353406 353406
Marginal effect of A(i,t-3) at means of A(i,t-3) and S(it)
z(it) = 0 0.001708 0.000418 0.003159 0.000409 0.002962 0.000416
z(it) = 1 -0.00168 0.00048 -0.00128 0.000473 -0.00126 0.000473
Marginal effects difference(a) 0.003389 0.000577 0.004441 0.000574 0.004225 0.000528

(a) This is equal to the marginal effect at z(it)=0 minus the marginal effect at z(it)=1. 

Note: The dependent variable is Δy(i,t+1). Standard errors are clustered at the district level (M=27). 
Marginal effects are evaluated at sample means of regressors (in levels). Datapoints for which 
Δz(it)=1 and Δz(i,t-1)=1 (i.e. the period when z(it) switches from 0 to 1 and the subsequent period) 
are excluded for these estimations. Δ[z(it) x S(it)] is collinear with the fixed effects in (2) and (3), and 
is therefore excluded from these specifications. *** p<0.01 ** p<0.05 * p<0.10. 



Appendix E. Generalized Nonlinear Specification 

Quadratic specifications form the basis for our empirical tests throughout the paper. In this 

section of the Appendix, we show results based on generalized specifications which contain 

higher order terms and further interactions of the continuous variables in the model. We focus 

on the specification for which pre- and post-adoption data on usage are combined (see Table 

4 in the main paper). We consider polynomial specifications of order P = 2 (quadratic; same 

as in Table 4), 3, 4, and 5. These specifications include all terms  𝐴𝐴𝑖𝑖,𝑡𝑡−2𝑙𝑙 𝑆𝑆𝑖𝑖𝑡𝑡𝑚𝑚 for 𝑙𝑙 = 0,1, … ,𝑃𝑃, 

𝑚𝑚 = 0,1, … ,𝑃𝑃 − 𝑙𝑙, expressed in first-differences and interacted with the dummy 𝑧𝑧𝑖𝑖𝑡𝑡. The full 

set of control variables are used throughout. Table E1 summarizes the sets of higher-order 

terms included in the different polynomial specifications. Estimated marginal effects are 

shown in Table E2. 

TABLE E1 
Polynomial specifications 

Order of polynomial  Included terms: 

P = 2 (quadratic; same 
as in Table 4) 

∆𝐴𝐴𝑖𝑖,𝑡𝑡−2,∆𝑆𝑆𝑖𝑖𝑡𝑡2 ,∆𝐴𝐴𝑖𝑖,𝑡𝑡−22 ,∆�𝑆𝑆𝑖𝑖𝑡𝑡𝐴𝐴𝑖𝑖,𝑡𝑡−2�. 
 
 

P = 3  All terms in the specification for P = 2, and 
 ∆𝑆𝑆𝑖𝑖𝑡𝑡3 ,∆𝐴𝐴𝑖𝑖,𝑡𝑡−23 ,∆�𝑆𝑆𝑖𝑖𝑡𝑡2𝐴𝐴𝑖𝑖,𝑡𝑡−2�,∆�𝐴𝐴𝑖𝑖,𝑡𝑡−22 𝑆𝑆𝑖𝑖𝑡𝑡�, 
and these terms interacted with 𝑧𝑧𝑖𝑖𝑡𝑡. 
 

P = 4 All terms in the specification for P = 3, and 
∆𝑆𝑆𝑖𝑖𝑡𝑡4 ,∆𝐴𝐴𝑖𝑖,𝑡𝑡−24 ,∆�𝑆𝑆𝑖𝑖𝑡𝑡3𝐴𝐴𝑖𝑖,𝑡𝑡−2�,∆�𝐴𝐴𝑖𝑖,𝑡𝑡−23 𝑆𝑆𝑖𝑖𝑡𝑡�,∆�𝐴𝐴𝑖𝑖,𝑡𝑡−22 𝑆𝑆𝑖𝑖𝑡𝑡2�, 
and these terms interacted with 𝑧𝑧𝑖𝑖𝑡𝑡. 
 

P = 5 All terms in the specification for P = 4, and 
∆𝑆𝑆𝑖𝑖𝑡𝑡5 ,∆𝐴𝐴𝑖𝑖,𝑡𝑡−25 ,∆�𝑆𝑆𝑖𝑖𝑡𝑡4𝐴𝐴𝑖𝑖,𝑡𝑡−2�,∆�𝐴𝐴𝑖𝑖,𝑡𝑡−24 𝑆𝑆𝑖𝑖𝑡𝑡�,∆�𝐴𝐴𝑖𝑖,𝑡𝑡−23 𝑆𝑆𝑖𝑖𝑡𝑡2�,∆�𝐴𝐴𝑖𝑖,𝑡𝑡−22 𝑆𝑆𝑖𝑖𝑡𝑡3�, 
and these terms interacted with 𝑧𝑧𝑖𝑖𝑡𝑡. 
 

 

  



TABLE E2 
Adoption and subsequent usage: Results based on higher-order polynomial specifications  

 
(1)  

P = 2 
(2) 

P = 3 
(3) 

P = 4 
(4) 

P = 5 
     
Marginal effect of 𝐴𝐴𝑖𝑖,𝑡𝑡−2 at means of 𝐴𝐴𝑖𝑖,𝑡𝑡−2 and 𝑆𝑆𝑖𝑖𝑡𝑡  
𝑧𝑧𝑖𝑖𝑡𝑡 = 0 0.0036 0.0025 0.0035 0.0036 

 (0.0005)*** (0.0005)*** (0.0006)*** (0.0007)*** 
𝑧𝑧𝑖𝑖𝑡𝑡 = 1 -0.0002 -0.0002 -0.0001 -0.00005 

 (0.0003) (0.0003) (0.0003) (0.0004) 
Marginal effects  0.0038 0.0027 0.0036 0.0036 
difference† (0.0006)*** (0.0005)*** (0.0006)*** (0.0009)*** 

  
  

Additional higher-order 
terms, zit = 0 (p-value)   

0.000 0.000 0.000 

Additional higher-order 
terms, zit = 1 (p-value)   

0.000 0.000 0.000 

  
Fixed effects     
Year x month x zit No No No No 
District x zit No No No No 
Cell tower x zit  Yes Yes Yes Yes 
Year x month x district x 
zit  

Yes Yes Yes Yes 

     
Observations 357,947 357,947 357,947 357,947 

Notes: See notes to Table 4 for details on the underlying regressions. The “additional higher-
order terms” are those specified in Table E1, for P=3, 4 and 5. 
† This is equal to the marginal effect at 𝑧𝑧𝑖𝑖𝑡𝑡 = 0 minus the marginal effect at 𝑧𝑧𝑖𝑖𝑡𝑡 = 1. 
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